
Computer Organization Page 1

K.C.E. SOCIETY’S

COLLEGE OF ENGINEERING & I.T. JALGAON – 425001
DEPARTMENT OF COMPUTER ENGINEERING & IT

COMPUETR ORGANIZARTION AND ARCHITECTURE

UNIT I

Basic Structure Of Computers: Computer Types, Functional unit, Basic OPERATIONAL concepts,
Bus structures, Software, Performance, multiprocessors and multi computers.
Data Representation: Fixed Point Representation. Floating – Point Representation. Error Detection
codes.
Register Transfer Language And Micro Operations: Register Transfer language. Register
Transfer Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro
operations, Arithmetic logic shift unit.

Basic Structure of Computers

Computer Architecture in general covers three aspects of computer design namely: Computer
Hardware, Instruction set Architecture and Computer Organization.
Computer hardware consists of electronic circuits, displays, magnetic and optical storage
media and communication facilities.
Instruction set Architecture is programmer visible machine interface such as instruction set,
registers, memory organization and exception handling. Two main approaches are mainly
CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer)
Computer Organization includes the high level aspects of a design, such as memory system, the
bus structure and the design of the internal CPU.

Computer Types

Computer is a fast electronic calculating machine which accepts digital input, processes it
according to the internally stored instructions (Programs) and produces the result on the
output device. The internal operation of the computer can be as depicted in the figure below:

Figure 1: Fetch, Decode and Execute steps in a Computer System

Computer Organization Page 2

The computers can be classified into various categories as given below:

 Micro Computer
 Laptop Computer
 Work Station
 Super Computer
 Main Frame
 Hand Held
 Multi core

Micro Computer: A personal computer; designed to meet the computer needs of an
individual. Provides access to a wide variety of computing applications, such as word
processing, photo editing, e-mail, and internet.

Laptop Computer: A portable, compact computer that can run on power supply or a battery
unit. All components are integrated as one compact unit. It is generally more expensive than a
comparable desktop. It is also called a Notebook.

Work Station: Powerful desktop computer designed for specialized tasks. Generally used for
tasks that requires a lot of processing speed. Can also be an ordinary personal computer
attached to a LAN (local area network).

Super Computer: A computer that is considered to be fastest in the world. Used to execute
tasks that would take lot of time for other computers. For Ex: Modeling weather systems,
genome sequence, etc (Refer site: http://www.top500.org/)

Main Frame: Large expensive computer capable of simultaneously processing data for
hundreds or thousands of users. Used to store, manage, and process large amounts of data that
need to be reliable, secure, and centralized.

Hand Held: It is also called a PDA (Personal Digital Assistant). A computer that fits into a
pocket, runs on batteries, and is used while holding the unit in your hand. Typically used as
an appointment book, address book, calculator and notepad.

Multi Core: Have Multiple Cores – parallel computing platforms. Many Cores or computing
elements in a single chip. Typical Examples: Sony Play station, Core 2 Duo, i3, i7 etc.

GENERATION OF COMPUTERS

Development of technologies used to fabricate the processors, memories and I/O units of
the computers has been divided into various generations as given below:

 First generation
 Second generation
 Third generation
 Fourth generation
 Beyond the fourth generation

Computer Organization Page 3

First generation:
1946 to 1955: Computers of this generation used Vacuum Tubes. The computes were built using
stored program concept. Ex: ENIAC, EDSAC, IBM 701.
Computers of this age typically used about ten thousand vacuum tubes. They were bulky in
size had slow operating speed, short life time and limited programming facilities.

Second generation:
1955 to 1965: Computers of this generation used the germanium transistors as the active
witching electronic device. Ex: IBM 7000, B5000, IBM 1401. Comparatively smaller in
size About ten times faster operating speed as compared to first generation vacuum tube
based computers. Consumed less power, had fairly good reliability. Availability of large
memory was an added advantage.

Third generation:
1965 to 1975: The computers of this generation used the Integrated Circuits as the active
electronic components. Ex: IBM system 360, PDP minicomputer etc. They were still smaller
in size. They had powerful CPUs with the capacity of executing 1 million instructions per
second (MIPS). Used to consume very less power consumption.

Fourth generation:
1976 to 1990: The computers of this generation used the LSI chips like microprocessor as
their active electronic element. HCL horizen III, and WIPRO‟S Uniplus+ HCL‟s Busybee
PC etc.
They used high speed microprocessor as CPU. They were more user friendly and highly reliable
systems. They had large storage capacity disk memories.

Beyond Fourth Generation:
1990 onwards: Specialized and dedicated VLSI chips are used to control specific functions
of these computers. Modern Desktop PC‟s, Laptops or Notebook Computers.

Computer Organization Page 4

Functional Unit

A computer in its simplest form comprises five functional units namely input unit, output unit
memory unit, arithmetic & logic unit and control unit. Figure 2 depicts the functional units of
a computer system.

Figure 2: Basic functional units of a computer

Let us discuss about each of them in brief:

1. Input Unit: Computer accepts encoded information through input unit. The
standard input device is a keyboard. Whenever a key is pressed, keyboard
controller sends the code to CPU/Memory.

Examples include Mouse, Joystick, Tracker ball, Light pen, Digitizer, Scanner etc.

2. Memory Unit: Memory unit stores the program instructions (Code), data
and results of computations etc. Memory unit is classified as:

 Primary /Main Memory

 Secondary /Auxiliary Memory

Computer Organization Page 5

Primary memory is a semiconductor memory that provides access at high speed.
Run time program instructions and operands are stored in the main memory. Main
memory is classified again as ROM and RAM. ROM holds system programs and
firmware routines such as BIOS, POST, I/O Drivers that are essential to manage the
hardware of a computer. RAM is termed as Read/Write memory or user memory that
holds run time program instruction and data. While primary storage is essential, it is
volatile in nature and expensive. Additional requirement of memory could be supplied
as auxiliary memory at cheaper cost. Secondary memories are non volatile in nature.

3. Arithmetic and logic unit: ALU consist of necessary logic circuits like adder,
comparator etc., to perform operations of addition, multiplication, comparison of two
numbers etc.

4. Output Unit: Computer after computation returns the computed results, error
messages, etc. via output unit. The standard output device is a video monitor,
LCD/TFT monitor. Other output devices are printers, plotters etc.

5. Control Unit: Control unit co-ordinates activities of all units by issuing control
signals. Control signals issued by control unit govern the data transfers and then
appropriate operations take place. Control unit interprets or decides the
operation/action to be performed.

The operations of a computer can be summarized as follows:

1. A set of instructions called a program reside in the main memory of computer.

2. The CPU fetches those instructions sequentially one-by-one from the main memory,
decodes them and performs the specified operation on associated data operands in
ALU.

3. Processed data and results will be displayed on an output unit.

4. All activities pertaining to processing and data movement inside the computer
machine are governed by control unit.

Computer Organization Page 6

OPERAND/s OPCODE

Basic Operational Concepts

An Instruction consists of two parts, an Operation code and operand/s as shown below:

Let us see a typical instruction
ADD LOCA, R0

This instruction is an addition operation. The following are the steps to execute the

instruction: Step 1: Fetch the instruction from main memory into the processor

Step 2: Fetch the operand at location LOCA from main memory into the processor

Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register
R0 Step 4: Store the result (sum) in R0.

The same instruction can be realized using two instructions as
Load LOCA,
R1 Add R1,
R0

The steps to execute the instructions can be enumerated as below:

Step 1: Fetch the instruction from main memory into the
processor Step 2: Fetch the operand at location LOCA from main
memory into

the processor Register R1
Step 3: Add the content of Register R1 and the contents of register
R0 Step 4: Store the result (sum) in R0.

Computer Organization Page 7

Figure 3 below shows how the memory and the processor are connected. As shown in the
diagram, in addition to the ALU and the control circuitry, the processor contains a number of
registers used for several different purposes. The instruction register holds the instruction that
is currently being executed. The program counter keeps track of the execution of the program.
It contains the memory address of the next instruction to be fetched and executed. There are n
general purpose registers R0 to Rn-1 which can be used by the programmers during writing
programs.

Figure 3: Connections between the processor and the memory

The interaction between the processor and the memory and the direction of flow of
information is as shown in the diagram below:

Figure 4: Interaction between the memory and the ALU

Computer Organization Page 8

BUS STRUCTURES

Group of lines that serve as connecting path for several devices is called a bus (one bit per
line). Individual parts must communicate over a communication line or path for exchanging
data, address and control information as shown in the diagram below. Printer example –
processor to printer. A common approach is to use the concept of buffer registers to hold the
content during the transfer.

SOFTWARE

Figure 5: Single bus structure

If a user wants to enter and run an application program, he/she needs a System Software.
System Software is a collection of programs that are executed as needed to perform functions
such as:

 Receiving and interpreting user commands
 Entering and editing application programs and storing then as files in secondary

storage devices
 Running standard application programs such as word processors, spread sheets,

games etc…
Operating system - is key system software component which helps the user to exploit the
below underlying hardware with the programs.

USER PROGRAM and OS ROUTINE INTERACTION

Let‟s assume computer with 1 processor, 1 disk and 1 printer and application program is in
machine code on disk. The various tasks are performed in a coordinated fashion, which is
called multitasking. t0, t1 …t5 are the instances of time and the interaction during various
instances as given below:

t0: the OS loads the program from the disk to
memory t1: program executes
t2: program accesses disk
t3: program executes some
more t4: program accesses
printer
t5: program terminates

Figure 6 :User program and OS routine sharing of the
processor

PERFORMANCE
The most important measure of the performance of a computer is how quickly it can
execute programs. The speed with which a computer executes program is affected by
the design of its hardware. For best performance, it is necessary to design the compiles,
the machine instruction set, and the hardware in a coordinated way.
The total time required to execute the program is elapsed time is a measure of the
performance of the entire computer system. It is affected by the speed of the processor,
the disk and the printer. The time needed to execute a instruction is called the processor
time.
Just as the elapsed time for the execution of a program depends on all units in a
computer system, the processor time depends on the hardware involved in the execution
of individual machine instructions. This hardware comprises the processor and the
memory which are usually connected by the bus.
The pertinent parts of the fig. c is repeated in fig. d which includes the cache memory as
part of the processor unit.
Let us examine the flow of program instructions and data between the memory and the
processor. At the start of execution, all program instructions and the required data are
stored in the main memory. As the execution proceeds, instructions are fetched one by
one over the bus into the processor, and a copy is placed in the cache later if the same
instruction or data item is needed a second time, it is read directly from the cache.
The processor and relatively small cache memory can be fabricated on a single IC chip.
The internal speed of performing the basic steps of instruction processing on chip is
very high and is considerably faster than the speed at which the instruction and data can
be fetched from the main memory. A program will be executed faster if the movement
of instructions and data between the main memory and the processor is minimized,
which is achieved by using the cache.

For example:- Suppose a number of instructions are executed repeatedly over a short
period of time as happens in a program loop. If these instructions are available in the
cache, they can be fetched quickly during the period of repeated use. The same applies
to the data that are used repeatedly.

Processor clock:

Processor circuits are controlled by a timing signal called clock. The clock designer the
regular time intervals called clock cycles. To execute a machine instruction the
processor divides the action to be performed into a sequence of basic steps that each step
can be completed in one clock cycle. The length P of one clock cycle is an important
parameter that affects the processor performance.
Processor used in today‟s personal computer and work station have a clock rates that
range from a few hundred million to over a billion cycles per second.

Basic performance equation:

We now focus our attention on the processor time component of the total elapsed time.
Let „T‟ be the processor time required to execute a program that has been prepared
in some high-level language. The compiler generates a machine language object
program that corresponds to the source program. Assume that complete execution of the
program requires the execution of N machine cycle language instructions. The number
N is the actual number of instruction execution and is not necessarily equal to the
number of machine cycle instructions in the object program. Some instruction may be
executed more than once, which in the case for instructions inside a program loop others
may not be executed all, depending on the input data used.
Suppose that the average number of basic steps needed to execute one machine
cycle instruction is S, where each basic step is completed in one clock cycle. If clock
rate is „R‟ cycles per second, the program execution time is given by

T=N*S/R

this is often referred to as the basic performance equation.
We must emphasize that N, S & R are not independent parameters changing one may
affect another. Introducing a new feature in the design of a processor will lead to
improved performance only if the overall result is to reduce the value of T.

Performance measurements:

It is very important to be able to access the performance of a computer, comp designers
use performance estimates to evaluate the effectiveness of new features.
The previous argument suggests that the performance of a computer is given by the
execution time T, for the program of interest.
Inspite of the performance equation being so simple, the evaluation of „T‟ is highly
complex. Moreover the parameters like the clock speed and various architectural
features are not reliable indicators of the expected performance.
Hence measurement of computer performance using bench mark programs is done to
make comparisons possible, standardized programs must be used.

The performance measure is the time taken by the computer to execute a given bench
mark. Initially some attempts were made to create artificial programs that could be used
as bench mark programs. But synthetic programs do not properly predict the
performance obtained when real application programs are run.
A non profit organization called SPEC- system performance evaluation corporation
selects and publishes bench marks.
The program selected range from game playing, compiler, and data base applications to
numerically intensive programs in astrophysics and quantum chemistry. In each case,
the program is compiled under test, and the running time on a real computer is
measured. The same program is also compiled and run on one computer selected as
reference.
The „SPEC‟ rating is computed as follows.

Running time on the reference computer
SPEC rating =

Running time on the computer under test
If the SPEC rating = 50

Multiprocessor & microprocessors:

Large computers that contain a number of processor units are called multiprocessor
system. These systems either execute a number of different application tasks in parallel
or execute subtasks of a single large task in parallel. All processors usually have access
to all memory locations in such system & hence they are called shared memory
multiprocessor systems. The high performance of these systems comes with much
increased complexity and cost. In contrast to multiprocessor systems, it is also possible
to use an interconnected group of complete computers to achieve high total
computational power. These computers normally have access to their own memory units
when the tasks they are executing need to communicate data they do so by exchanging
messages over a communication network. This properly distinguishes them from shared
memory multiprocessors, leading to name message-passing multi computer.

Data Representation:

Information that a Computer is dealing with

Data
Numeric Data

Numbers(Integer, real)
Non-numeric Data
Letters, Symbols
Relationship between data elements
Data Structures
Linear Lists, Trees, Rings, etc
Program(Instruction)

Numeric Data Representation

 Decimal Binary Octal Hexadecimal

Fixed
Point

Representation:
It‟s the representation for integers only where the decimal point is always fixed. i.e at
the end of rightmost point. it can be again represented in two ways.

1. Sign and Magnitude Representation
In this system, he most significant (leftmost) bit in the word as a sign bit. If the sign bit
is 0, the number is positive; if the sign bit is 1, the number is negative.
The simplest form of representing sign bit is the sign magnitude representation.

One of the draw back for sign magnitude number is addition and subtraction need to
consider both sign of the numbers and their relative magnitude.

Another drawback is there are two representation for 0(Zero) i.e +0 and -0.

2. One’s Complement (1’s) Representation
In this representation negative values are obtained by complementing each bit of the
corresponding positive number.
For example 1s complement of 0101 is 1010 . The process of forming the 1s
complement of a given number is equivalent to subtracting that number from 2n -1 i.e
from 1111 for 4 bit number.

Two‟s Complement (2‟s) Representation Forming the 2s complement of a number is
done by subtracting that number from 2n . So 2s complement of a number is obtained
by adding 1 to 1s complement of that number.

Ex: 2‟s complement of 0101 is 1010 +1 = 1011
NB: In all systems, the leftmost bit is 0 for positive number and 1 for negative number.

Floating-point representation
Floating-point numbers are so called as the decimal or binary point floats over the base

00 0000 00 0
01 0001 01 1
02 0010 02 2
03 0011 03 3
04 0100 04 4
05 0101 05 5
06 0110 06 6
07 0111 07 7
08 1000 10 8
09 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F

depending on the exponent value.
It consists two components.
• Exponent
• Mantissa
Example: Avogadro's number can be written as 6.02x1023 in base 10. And the mantissa
and exponent are 6.02 and 1023 respctivly. But computer floating-point numbers are
usually based on base two. So 6.02x1023 is approximately (1 and 63/64)x278 or
1.111111 (base two) x 21001110 (base two)
Error Detection Codes
Parity System
Hamming Distance
CRC
Check sum

Register Transfer Language And Micro Operations:

Register Transfer language:

 Digital systems are composed of modules that are constructed from digital
components, such as registers, decoders, arithmetic elements, and control logic

 The modules are interconnected with common data and control paths to form a
digital computer system

 The operations executed on data stored in registers are called microoperations
 A microoperation is an elementary operation performed on the information

stored in one or more registers
 Examples are shift, count, clear, and load
 Some of the digital components from before are registers that implement

microoperations
 The internal hardware organization of a digital computer is best defined by

specifying

o The set of registers it contains and their functions
o The sequence of microoperations performed on the binary information

stored
o The control that initiates the sequence of microoperations

 Use symbols, rather than words, to specify the sequence of microoperations
 The symbolic notation used is called a register transfer language
 A programming language is a procedure for writing symbols to specify a given

computational process
 Define symbols for various types of microoperations and describe associated

hardware that can implement the microoperations

Register Transfer

 Designate computer registers by capital letters to denote its function
 The register that holds an address for the memory unit is called MAR
 The program counter register is called PC

 IR is the instruction register and R1 is a processor register
 The individual flip-flops in an n-bit register are numbered in sequence from 0 to

n-1
 Refer to Figure 4.1 for the different representations of a register

 Designate information transfer from one register to
another by R2 R1

 This statement implies that the hardware is available
o The outputs of the source must have a path to the inputs of the

destination
o The destination register has a parallel load capability

 If the transfer is to occur only under a predetermined control condition,
designate it by

If (P = 1) then (R2 R1)
or,

P: R2 R1,

where P is a control function that can be either 0 or 1

 Every statement written in register transfer notation implies the
presence of the required hardware construction

 It is assumed that all transfers occur during a clock edge transition
 All microoperations written on a single line are to be executed at the

same time T: R2 R1, R1 R2

Bus and Memory Transfers

 Rather than connecting wires between all registers, a common bus is
used

 A bus structure consists of a set of common lines, one for each bit of a
register

 Control signals determine which register is selected by the bus
duringeach transfer

 Multiplexers can be used to construct a common bus
 Multiplexers select the source register whose binary information is

then placed on the bus
 The select lines are connected to the selection inputs of the

multiplexers and choose the bits of one register

 In general, a bys system will multiplex k registers of n bits each to
produce an n- line common bus

 This requires n multiplexers – one for each bit
 The size of each multiplexer must be k x 1
 The number of select lines required is log k
 To transfer information from the bus to a register, the bus lines are

connected to the inputs of all destination registers and the
corresponding load control line must be activated

 Rather than listing each step as
BUS C, R1 BUS,

use R1 C, since the bus isimplied

 Instead of using multiplexers, three-state gates can be used to

construct the bus system
 A three-state gate is a digital circuit that exhibits three states
 Two of the states are signals equivalent to logic 1 and 0
 The third state is a high-impedance state – this behaves like an open

circuit, which means the output is disconnected and does not have a
logic significance

 The three-state buffer gate has a normal input and a control
input which determines the output state

 With control 1, the output equals the normal input
 With control 0, the gate goes to a high-impedance state
 This enables a large number of three-state gate outputs to be connected

with wires to form a common bus line without endangering loading
effects

 Decoders are used to ensure that no more than one control input is
active at any given time

 This circuit can replace the multiplexer in Figure 4.3
 To construct a common bus for four registers of n bits each using

three-state buffers, we need n circuits with four buffers in each
 Only one decoder is necessary to select between the four registers
 Designate a memory word by the letter M
 It is necessary to specify the address of M when writing

memory transfer operations

 Designate the address register by AR and the data register by DR
 The read operation can be stated as: Read: DR M[AR]
 The write operation can

be stated as:
Write: M[AR] R1

Arithmetic Microoperations

 There are four categories of the most common microoperations:

o Register transfer: transfer binary information from one register
to another

o Arithmetic: perform arithmetic operations on numeric
data stored in registers

o Logic: perform bit manipulation operations on non-numeric
data stored in registers

o Shift: perform shift operations on data stored in registers

 The basic arithmetic microoperations are addition, subtraction,
increment, decrement, and shift

 Example of addition: R3 R1+R2
 Subtraction is most often implemented through complementation and

addition
 Example of subtraction: R3 R1 +R2 + 1 (strikethrough denotes

bar on top – 1‟s complement of R2)
 Adding 1 to the 1‟s complement produces the 2‟s complement
 Adding the contents of R1 to the 2‟s complement of R2 is

equivalent to subtracting

 Multiply and divide are not included as microoperations
 A microoperation is one that can be executed by one clock pulse
 Multiply (divide) is implemented by a sequence of add and shift

microoperations (subtract and shift)

 To implement the add microoperation with hardware, we need the
registers that hold the data and the digital component that performs
the addition

 A full-adder adds two bits and a previous carry
 A binary adder is a digital circuit that generates the arithmetic sum of

two binary numbers of any length
 A binary added is constructed with full-adder circuits connected in

cascade
 An n-bit binary adder requires n full-adders

 The subtraction A-B can be carried out by the following steps
o Take the 1‟s complement of B (invert each bit)

o Get the 2‟s complement by adding 1
o Add the result to A

 The addition and subtraction operations can be combined into one
common circuit by including an XOR gate with each full-adder

 The increment microoperation adds one to a number in a register
 This can be implemented by using a binary counter – every time the

count enable is active, the count is incremented by one
 If the increment is to be performed independent of a particular

register, then use half-adders connected in cascade
 An n-bit binary incrementer requires n half-adders

 Each of the arithmetic microoperations can be implemented in one
composite arithmetic circuit

 The basic component is the parallel adder
 Multiplexers are used to choose between the different operations
 The output of the binary adder is calculated from the

following sum: D = A + Y + Cin

Logic Microoperations

 Logic operations specify binary operations for strings of bits stored

in registers and treat each bit separately
 Example: the XOR of R1 and R2 is symbolized by

P: R1 R1⊕ R2
 Example: R1 = 1010 and R2 = 1100

1010 Content of R1
1100 Content of R2

0110

Content of R1 after P = 1

 Symbols used for logical microoperations:
o OR:
o AND:

o XOR: ⊕
 The + sign has two different meanings: logical OR and summation
 When + is in a microoperation, then summation
 When + is in a control function, then OR
 Example:

P + Q: R1 R2 + R3, R4 R5 R6
 There are 16 different logic operations that can be performed with

two binary variables

 The hardware implementation of logic microoperations requires that
logic gates be inserted for each bit or pair of bits in the registers

 All 16 microoperations can be derived from using four logic gates

 Logic microoperations can be used to change bit values, delete a

group of bits, or insert new bit values into a register
 The selective-set operation sets to 1 the bits in A where there are

corresponding 1‟s in B
1010 A before
1100 B
(logic
operand)
1110 A
after

A A B

 The selective-complement operation complements bits in A
where there are corresponding 1‟s in B

1010 A before
1100 B
(logic
operand)
0110 A
after

A A⊕ B

 The selective-clear operation clears to 0 the bits in A only
where there are corresponding 1‟s in B

1010 A before
1100 B
(logic

operand)
0010 A
after

A A B

 The mask operation is similar to the selective-clear operation, except
that the bits of A are cleared only where there are corresponding 0‟s
in B

1010 A before
1100 B
(logic
operand)
1000 A
after

A A B
 The insert operation inserts a new value into a group of bits
 This is done by first masking the bits to be replaced and then Oring

them with the bits to be inserted
0110 1010 A before
0000 1111 B (mask)
0000 1010 A after masking

0000 1010 A before
1001 0000 B (insert)
1001 1010 A after insertion

 The clear operation compares the bits in A and B and produces an all

0‟s result if the two number are equal
1010 A
1010 B

0000 A A⊕ B

Shift Microoperations

 Shift microoperations are used for serial transfer of data
 They are also used in conjunction with arithmetic, logic, and

other data- processing operations
 There are three types of shifts: logical, circular, and arithmetic
 A logical shift is one that transfers 0 through the serial input
 The symbols shl and shr are for logical shift-left and shift-right by

one position R1 shlR1

 The circular shift (aka rotate) circulates the bits of the register
around the two ends without loss of information

 The symbols cil and cir are for circular shift left and right

 The arithmetic shift shifts a signed binary number to the left or right
 To the left is multiplying by 2, to the right is dividing by 2
 Arithmetic shifts must leave the sign bit unchanged
 A sign reversal occurs if the bit in Rn-1 changes in value after the shift
 This happens if the multiplication causes an overflow
 An overflow flip-flop Vs can be used to detect

theoverflow Vs = Rn-1 ⊕Rn-2

 A bi-directional shift unit with parallel load could be used to implement
this

 Two clock pulses are necessary with this configuration: one to load
the value and another to shift

 In a processor unit with many registers it is more efficient to
implement the shift operation with a combinational circuit

 The content of a register to be shifted is first placed onto a common
bus and the output is connected to the combinational shifter, the shifted
number is then loaded back into the register

 This can be constructed with multiplexers

Arithmetic Logic Shift Unit

 The arithmetic logic unit (ALU) is a common operational unit

connected to a number of storage registers
 To perform a microoperation, the contents of specified registers are

placed in the inputs of the ALU
 The ALU performs an operation and the result is then transferred to a

destination register
 The ALU is a combinational circuit so that the entire register transfer

operation from the source registers through the ALU and into the
destination register can be performed during one clock pulse period

 UNIT II

Basic Computer Organization and Design

Instruction codes. Computer Registers Computer instructions, Timing and
Control, Instruction cycle. Memory Reference Instructions, Input – Output and
Interrupt, Complete Computer Description.
Micro Programmed Control: Control memory, Address sequencing, micro
program example, design of control unit, micro Programmed control

Instruction Formats:

A computer will usually have a variety of instruction code formats. It

is the function of the control unit within the CPU to interpret each

instruction code and provide the necessary control functions needed to

process the instruction.

The format of an instruction is usually depicted in a rectangular box

symbolizing the bits of the instruction as they appear in memory words or in

a control register. The bits of the instruction are divided into groups called

fields. The most common fields found in instruction formats are:

1 An operation code field that specifies the operation to be
performed.
2. An address field that designates a memory address or a processor

registers.

3. A mode field that specifies the way the operand or the effective
address is determined.

Other special fields are sometimes employed under certain

circumstances, as for example a field that gives the number of shifts in a

shift-type instruction.

The operation code field of an instruction is a group of bits that define

various processor operations, such as add, subtract, complement, and shift.

The bits that define the mode field of an instruction code specify a variety

of alternatives for choosing the operands from the given address.

Operations specified by computer instructions are executed on some

data stored in memory or processor registers, Operands residing in

processor registers are specified with a register address. A register address

is a binary number of k bits that defines one of 2k registers in the CPU. Thus

a CPU with 16 processor registers R0 through R15 will have a register

address field of four bits. The binary number 0101, for example, will

designate register R5.

Computers may have instructions of several different lengths

containing varying number of addresses. The number of address fields in

the instruction format of a computer depends on the internal organization of

its registers. Most computers fall into one of three types of CPU

organizations:
1 Single accumulator organization.

2 General register organization.

3 Stack organization.

All operations are performed with an implied accumulator register.

The instruction format in this type of computer uses one address field. For

example, the instruction that specifies an arithmetic addition is defined by

an assembly language instruction as ADD.

Where X is the address of the operand. The ADD instruction in this

case results in the operation AC ← AC + M[X]. AC is the accumulator

register and M[X] symbolizes the memory word located at address X.

An example of a general register type of organization was presented

in Fig. 7.1. The instruction format in this type of computer needs three

register address fields. Thus the instruction for an arithmetic addition may

be written in an assembly language as

 ADD R1, R2, R3

To denote the operation R1 ← R2 + R3. The number of address fields

in the instruction can be reduced from three to two if the destination register

is the same as one of the source registers. Thus the instruction

 ADD R1, R2

Would denote the operation R1 ← R1 + R2. Only register addresses

for R1 and R2 need be specified in this instruction.

Computers with multiple processor registers use the move instruction

with a mnemonic MOV to symbolize a transfer instruction. Thus the

instruction

 MOV R1, R2

Denotes the transfer R1 ← R2 (or R2 ← R1, depending on the

particular computer). Thus transfer-type instructions need two address fields

to specify the source and the destination.

General register-type computers employ two or three address fields in

their instruction format. Each address field may specify a processor register

or a memory word. An instruction symbolized by

ADD R1, X
Would specify the operation R1 ← R + M [X]. It has two address

fields, one for register R1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with

stack organization would have PUSH and POP instructions which require

an address field. Thus the instruction

PUSH X
Will push the word at address X to the top of the stack. The stack

pointer is updated automatically. Operation-type instructions do not need an

address field in stack-organized computers. This is because the operation is

performed on the two items that are on top of the stack. The instruction

ADD in a stack computer consists of an operation code only with no address

field. This operation has the effect of popping the two top numbers from the

stack, adding the numbers, and pushing the sum into the stack. There is no

need to specify operands with an address field since all operands are

implied to be in the stack.

To illustrate the influence of the number of addresses on computer

programs, we will evaluate the arithmetic statement X = (A + B) ∗ (C + D).

Using zero, one, two, or three address instruction. We will use the

symbols ADD, SUB, MUL, and DIV for the four arithmetic operations;

MOV for the transfer-type operation; and LOAD and STORE for transfers

to and from memory and AC register. We will assume that the operands are

in memory addresses A, B, C, and D, and the result must be stored in

memory at address X.

Three-Address Instructions
Computers with three-address instruction formats can use each

address field to specify either a processor register or a memory operand.

The program in assembly language that evaluates X = (A + B) ∗ (C + D) is

shown below, together with comments that explain the register transfer

operation of each instruction.

ADD R1, A, B R1 ←

M [A] + M [B]

ADD R2, C, D R2 ←

M [C] + M [D]

MUL X, R1, R2 M [X]

← R1 ∗R2

It is assumed that the computer has two processor registers, R1 and R2. The
symbol M [A] denotes the operand at memory address symbolized by A.
The advantage of the three-address format is that it results in short programs

when evaluating arithmetic expressions. The disadvantage is that the binary-

coded instructions require too many bits to specify three addresses. An

example of a commercial computer that uses three-address instructions is

the Cyber 170. The instruction formats in the Cyber computer are restricted

to either three register address fields or two register address fields and one

memory address field.

Two-Address Instructions
Two address instructions are the most common in commercial computers.

Here again each address field can specify either a processor register or a

memory word. The program to evaluate X = (A + B) ∗ (C + D) is as

follows:
MOV R1, A R1 ← M [A]

ADD R1, B R1 ← R1 + M [B]

MOV R2, C R2 ← M [C]

ADD R2, D R2 ← R2 + M [D]

MUL R1, R2 R1 ← R1∗R2

MOV X, R1 M [X] ← R1

The MOV instruction moves or transfers the operands to and from

memory and processor registers. The first symbol listed in an instruction is

assumed to be both a source and the destination where the result of the

operation is transferred.

One-Address Instructions
One-address instructions use an implied accumulator (AC) register for

all data manipulation. For multiplication and division there is a need for a

second register. However, here we will neglect the second and assume that

the AC contains the result of tall operations. The program to evaluate X =

(A + B) ∗ (C + D) is

STORE T M [T] ← AC

LOAD C AC ← M [C]

ADD D AC ← AC + M [D]

MUL T AC ← AC ∗ M [T]

STORE X M [X] ← AC

All operations are done between the AC register and a memory

operand. T is the address of a temporary memory location required for

storing the intermediate result.

Zero-Address Instructions
A stack-organized computer does not use an address field for the

instructions ADD and MUL. The PUSH and POP instructions, however,

need an address field to specify the operand that communicates with the

stack. The following program shows how X = (A + B) ∗ (C + D) will be

written for a stack organized computer. (TOS stands for top of stack)
PUSH A TOS ← A

PUSH B TOS ← B

ADD

PUSH

C

TOS ← (A + B)

TOS ← C

PUSH D TOS ← D

ADD TOS ← (C + D)

MUL

POP

X

TOS ← (C + D) ∗ (A + B)

M [X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary

to convert the expression into reverse Polish notation. The name “zero-

address” is given to this type of computer because of the absence of an

LOAD A AC ← M [A]
ADD B AC ← A [C] + M [B]

address field in the computational instructions.

Instruction Codes
A set of instructions that specify the operations, operands, and the sequence by
which processing has to occur. An instruction code is a group of bits that tells the
computer to perform a specific operation part.

Format of Instruction
The format of an instruction is depicted in a rectangular box symbolizing the bits
of an instruction. Basic fields of an instruction format are given below:
1. An operation code field that specifies the operation to be performed.
2. An address field that designates the memory address or register.
3. A mode field that specifies the way the operand of effective address is

determined.

Computers may have instructions of different lengths containing varying number
of addresses. The number of address field in the instruction format depends upon
the internal organization of its registers.

Addressing Modes

To understand the various addressing modes to be presented in this section,

it is imperative that we understand the basic operation cycle of the computer.

The control unit of a computer is designed to go through an instruction cycle

that is divided into three major phases:

1. Fetch the instruction from memory
2. Decode the instruction.

3. Execute the instruction.

There is one register in the computer called the program counter of PC that

keeps track of the instructions in the program stored in memory. PC holds the

address of the instruction to be executed next and is incremented each time an

instruction is fetched from memory. The decoding done in step 2 determines

the operation to be performed, the addressing mode of the instruction and the

location of the operands. The computer then executes the instruction and

returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified

with a distinct binary code, just like the operation code is specified. Other

computers use a single binary code that designates both the operation and

the mode of the instruction. Instructions may be defined with a variety of

addressing modes, and sometimes, two or more addressing modes are

combined in one instruction.

1. The operation code specified the operation to be performed. The

mode field is sued to locate the operands needed for the operation. There

may or may not be an address field in the instruction. If there is an address

field, it may designate a memory address or a processor register. Moreover,

as discussed in the preceding section, the instruction may have more than

one address field, and each address field may be associated with its own

particular addressing mode.

Although most addressing modes modify the address field of the

instruction, there are two modes that need no address field at all. These are

the implied and immediate modes.
1 Implied Mode: In this mode the operands are specified implicitly in the

definition of the instruction. For example, the instruction “complement accumulator” is

an implied-mode instruction because the operand in the accumulator register is implied

in the definition of the instruction. In fact, all register reference instructions that sue an

accumulator are implied-mode instructions.

Op code Mode Address

Figure 1: Instruction format with mode field

Zero-address instructions in a stack-organized computer are implied-

mode instructions since the operands are implied to be on top of the stack.

2 Immediate Mode: In this mode the operand is specified in the instruction

itself. Inother words, an immediate- mode instruction has an operand field rather than

an address field. The operand field contains the actual operand to be used in

conjunction with the operation specified in the instruction. Immediate-mode

instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction

may specify either a memory word or a processor register. When the

address field specifies a processor register, the instruction is said to be in the

register mode.

3 Register Mode: In this mode the operands are in registers that reside within

the CPU.The particular register is selected from a register field in the instruction. A k-

bit field can specify any one of 2k registers.

4 Register Indirect Mode: In this mode the instruction specifies a register in the

CPUwhose contents give the address of the operand in memory. In other words, the

selected register contains the address of the operand rather than the operand itself.

Before using a register indirect mode instruction, the programmer must

ensure that the memory address fo the operand is placed in the processor

register with a previous instruction. A reference to the register is then

equivalent to specifying a memory address. The advantage of a register

indirect mode instruction is that the address field of the instruction sues

fewer bits to select a register than would have been required to specify a

memory address directly.
5 Auto increment or Auto decrement Mode: This is similar to the register indirect

modeexcept that the register is incremented or decremented after (or before) its value is

used to access memory. When the address stored in the register refers to a table of data

in memory, it is necessary to increment or decrement the register after every access to

the table. This can be achieved by using the increment or decrement instruction.

However, because it is such a common requirement, some computers incorporate a

special mode that automatically increments or decrements the content of the register

after data access.

The address field of an instruction is used by the control unit in the

CPU to obtain the operand from memory. Sometimes the value given in the

address field is the address of the operand, but sometimes it is just an

address from which the address of the operand is calculated. To differentiate

among the various addressing modes it is necessary to distinguish between

the address part of the instruction and the effective address used by the

control when executing the instruction. The effective address is defined to

be the memory address obtained from the computation dictated by the given

addressing mode. The effective address is the address of the operand in a

computational-type instruction. It is the address where control branches in

response to a branch-type instruction. We have already defined two

addressing modes in previous chapter.

6 Direct Address Mode: In this mode the effective address is equal to the address part

ofthe instruction. The operand resides in memory and its address is given directly by

the address field of the instruction. In a branch-type instruction the address field

specifies the actual branch address.

7 Indirect Address Mode: In this mode the address field of the instruction gives

theaddress where the effective address is stored in memory. Control fetches the

instruction from memory and uses its address part to access memory again to read the

effective address.

8 Relative Address Mode: In this mode the content of the program counter is added to

theaddress part of the instruction in order to obtain the effective address. The address

part of the instruction is usually a signed number (in 2‟s complement representation)

which can be either positive or negative. When this number is added to the content of

the program counter, the result produces an effective address whose position in

memory is relative to the address of the next instruction. To clarify with an example,

assume that the program counter contains the number 825 and the address part of the

instruction contains the number 24. The instruction at location 825 is read from

memory during the fetch phase and the program counter is then incremented by one

to 826 + 24 = 850. This is 24 memory locations forward from the address of the next

instruction. Relative addressing is often used with branch-type instructions when the

branch address is in the area surrounding the instruction word itself. It results in a

shorter address field in the instruction format since the relative address can be

specified with a smaller number of bits compared to the number of bits required to

designate the entire memory address.

9 Indexed Addressing Mode: In this mode the content of an index register is added

to theaddress part of the instruction to obtain the effective address. The index

register is a special CPU register that contains an index value. The address field of

the instruction defines the beginning address of a data array in memory. Each

operand in the array is stored in memory relative to the beginning address. The

distance between the beginning address and the address of the operand is the index

value stores in the index register. Any operand in the array can be accessed with

the same instruction provided that the index register contains the correct index

value. The index register can be incremented to facilitate access to consecutive

operands. Note that if an index-type instruction does not include an address field in

its format, the instructionconverts to the register indirect mode of operation. Some

computers dedicate one CPU register to function solely as an index register. This

register is involved implicitly when the index-mode instruction is used. In

computers with many processor registers, any one of the CPU registers can contain

the index number. In such a case the register must be specified explicitly in a

register field within the instruction format.

10 Base Register Addressing Mode: In this mode the content of a base register is

added tothe address part of the instruction to obtain the effective address. This is

similar to the indexed addressing mode except that the register is now called a base

register instead of an index register. The difference between the two modes is in

the way they are used rather than in the way that they are computed. An index

register is assumed to hold an index number that is relative to the address part of

the instruction. A base register is assumed to hold a base address and the address

field of the instruction gives a displacement relative to this base address. The base

register addressing mode is used in computers to facilitate the relocation of

programs in memory. When programs and data are moved from one segment of

memory to another, as required in multiprogramming systems, the address values

of the base register requires updating to reflect the beginning of a new memory

segment.

Numerical Example

Computer Registers

 Data Register(DR) : hold the operand(Data) read from memory

 Accumulator Register(AC) : general purpose processing register

 Instruction Register(IR) : hold the instruction read from memory

 Temporary Register(TR) : hold a temporary data during processing

 Address Register(AR) : hold a memory address, 12 bit width

 Program Counter(PC) :
»hold the address of the next instruction to be read from memory
after the current instruction is executed
»Instruction words are read and executed in sequence unless a branch
instruction is encountered
»A branch instruction calls for a transfer to a nonconsecutive
instruction in the program
»The address part of a branch instruction is transferred to PCto become
the address of the next instruction
Input Register(INPR) : receive an 8-bit character from an input device
 Output Register(OUTR) : hold an 8-bit character for an
output device
The following registers are used in Mano‟s example computer.

Register Number Register Register

symbol of bits name Function-----------------------

DR 16 Data register Holds memory operands

AR 12 Address register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction

TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

Computer Instructions:
The basic computer has 16 bit instruction register (IR) which can denote either
memory reference or register reference or input-output instruction.

1. Memory Reference – These instructions refer to memory address as an
operand. The other operand is always accumulator. Specifies 12 bit
address, 3 bit opcode (other than 111) and 1 bit addressing mode for direct
and indirect addressing.
Example –
IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching
and decoding of instruction we find out that it is a memory reference
instruction for ADD operation.

2. Register Reference – These instructions perform operations on registers

rather than memory addresses. The IR(14-12) is 111 (differentiates it from
memory reference) and IR(15) is 0 (differentiates it from input/output
instructions). The rest 12 bits specify register operation.
Example –
IR register contains = 0111001000000000, i.e. CMA after fetch and decode
cycle we find out that it is a register reference instruction for complement
accumulator.

3. Input/Output – These instructions are for communication between

computer and outside environment. The IR(14-12) is 111 (differentiates it
from memory reference) and IR(15) is 1 (differentiates it from register
reference instructions). The rest 12 bits specify I/O operation.
Example –
IR register contains = 1111100000000000, i.e. INP after fetch and decode
cycle we find out that it is an input/output instruction for inputing
character. Hence, INPUT character from peripheral device.

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock,
with the exception of the INPR register. At each clock pulse, the control unit
sends control signals to control inputs of the bus, the registers, and the ALU.
Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital
logic design techniques to produce a minimal, optimized circuit. In other
words, the control unit is like an ASIC (application-specific integrated
circuit).

 A microprogrammed control unit is built from some sort of ROM. The
desired control signals are simply stored in the ROM, and retrieved in
sequence to drive the microoperations needed by a particular instruction.

Hence, AC <- ~AC

Hence, DR <- M[AR]
AC <- AC+ DR, SC <- 0

Instruction Cycle

The CPU performs a sequence of microoperations for each instruction. The
sequence for each instruction of the Basic Computer can be refined into 4
abstract phases:

1. Fetch instruction
2. Decode
3. Fetch operand
4. Execute

Program execution can be represented as a top-down design:

1. Program execution

a. Instruction 1
i. Fetch instruction

ii. Decode
iii. Fetch operand
iv. Execute

b. Instruction 2
i. Fetch instruction

ii. Decode
iii. Fetch operand
iv. Execute

c. Instruction 3 ...

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is
completed, and then it is cleared to begin the next instruction. This process
repeats until a HLT instruction is executed, or until the power is shut off.

Instruction Fetch and Decode
The instruction fetch and decode phases are the same for all instructions, so the
control functions and microoperations will be independent of the instruction
code.
Everything that happens in this phase is driven entirely by timing variables T0,
T1 and T2. Hence, all control inputs in the CPU during fetch and decode are
functions of these three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

Micro Programmed Control:

Control Memory

 The control unit in a digital computer initiates sequences of microoperations
 The complexity of the digital system is derived form the number of

sequences that are performed
 When the control signals are generated by hardware, it is hardwired
 In a bus-oriented system, the control signals that specify

microoperations are groups of bits that select the paths in
multiplexers, decoders, and ALUs.

 The control unit initiates a series of sequential steps of microoperations
 The control variables can be represented by a string of 1‟s and 0‟s called a

control word
 A microprogrammed control unit is a control unit whose binary control

variables are stored in memory
 A sequence of microinstructions constitutes a microprogram
 The control memory can be a read-only memory
 Dynamic microprogramming permits a microprogram to be loaded

and uses a writable control memory
 A computer with a microprogrammed control unit will have two

separate memories: a main memory and a control memory
 The microprogram consists of microinstructions that specify various

internal control signals for execution of register microoperations
 These microinstructions generate the microoperations to:

o fetch the instruction from main memory
o evaluate the effective address
o execute the operation
o return control to the fetch phase for the next instruction

 The control memory address register specifies the address of the
microinstruction

 The control data register holds the microinstruction read from memory
 The microinstruction contains a control word that specifies one

or more microoperations for the data processor
 The location for the next microinstruction may, or may not be the

next in sequence
 Some bits of the present microinstruction control the generation of the

address of the next microinstruction
 The next address may also be a function of external input conditions
 While the microoperations are being executed, the next address is

computed in the next address generator circuit (sequencer) and then
transferred into the CAR to read the next microinstructions

 Typical functions of a sequencer are:
o incrementing the CAR by one
o loading into the CAR and address from control memory
o transferring an external address
o loading an initial address to start the control operations

 A clock is applied to the CAR and the control word and next-address

information are taken directly from the control memory
 The address value is the input for the ROM and the control work is the

output
 No read signal is required for the ROM as in a RAM

 The main advantage of the microprogrammed control is that once the

hardware configuration is established, there should be no need for
h/w or wiring changes

 To establish a different control sequence, specify a
different set of microinstructions for control memory

Address Sequencing

 Microinstructions are stored in control memory in groups, with each group

specifying a routine
 Each computer instruction has its own microprogram routine to

generate the microoperations
 The hardware that controls the address sequencing of the control memory

must be capable of sequencing the microinstructions within a routine and
be able to branch from one routine to another

 Steps the control must undergo during the execution of a single
computer instruction:

o Load an initial address into the CAR when power is turned on in the
computer. This address is usually the address of the first
microinstruction that activates the instruction fetch routine – IR
holds instruction

o The control memory then goes through the routine to
determine the effective address of the operand – AR holds
operand address

o The next step is to generate the microoperations that
execute the instruction by considering the opcode and
applying a mapping

o After execution, control must return to the fetch routine by
executing an unconditional branch

 The microinstruction in control memory contains a set of bits to
initiate microoperations in computer registers and other bits to
specify the method by which the next address is obtained

 Conditional branching is obtained by using part of the microinstruction to
select a specific status bit in order to determine its condition

 The status conditions are special bits in the system that provide parameter
information such as the carry-out of an adder, the sign bit of a
number, the mode bits of an instruction, and i/o status conditions

 The status bits, together with the field in the microinstruction that
specifies a branch address, control the branch logic

 The branch logic tests the condition, if met then branches, otherwise,
increments the CAR

 If there are 8 status bit conditions, then 3 bits in the microinstruction are
used to specify the condition and provide the selection variables for
the multiplexer

 For unconditional branching, fix the value of one status bit to be one
load the branch address from control memory into the CAR

 A special type of branch exists when a microinstruction specifies a
branch to the first word in control memory where a microprogram
routine is located

 The status bits for this type of branch are the bits in the opcode
 Assume an opcode of four bits and a control memory of 128 locations
 The mapping process converts the 4-bit opcode to a 7-bit address for

control memory
 This provides for each computer instruction a microprogram routine

with a capacity of four microinstructions

 Subroutines are programs that are used by other routines to
accomplish a particular task and can be called from any point
within the main body of the microprogram

 Frequently many microprograms contain identical section of code
 Microinstructions can be saved by employing subroutines that use

common sections of microcode
 Microprograms that use subroutines must have a provisions for storing

the return address during a subroutine call and restoring the address
during a subroutine return

 A subroutine register is used as the source and destination for the addresses

UNIT III
Computer Processing Unit Organization

Introduction to CPU

The operation or task that must perform by CPU is:
• Fetch Instruction: The CPU reads an instruction from memory.
• Interpret Instruction: The instruction is decoded to determine what action is
required.
• Fetch Data: The execution of an instruction may require reading data from memory
or I/O module.
• Process data: The execution of an instruction may require performing some arithmetic
or logical operation on data.
• Write data: The result of an execution may require writing data to memory or an I/O
module.

To do these tasks, it should be clear that the CPU needs to store some data temporarily.
It must remember the location of the last instruction so that it can know where to get the
next instruction. It needs to store instructions and data temporarily while an instruction
is being executed. In other words, the CPU needs a small internal memory. These
storage locations are generally referred as registers.

The major components of the CPU are an arithmetic and logic unit (ALU) and a control
unit (CU). The ALU does the actual computation or processing of data. The CU controls
the movement of data and instruction into and out of the CPU and controls the operation
of the ALU.

The CPU is connected to the rest of the system through system bus. Through system
bus, data or information gets transferred between the CPU and the other component of
the system. The system bus may have three components:

Data Bus: Data bus is used to transfer the data between main memory and CPU.
Address Bus: Address bus is used to access a particular memory location by putting the
address of the memory location.
Control Bus: Control bus is used to provide the different control signal generated by
CPU to different part of the system.
As for example, memory read is a signal generated by CPU to indicate that a memory
read operation has to be performed. Through control bus this signal is transferred to
memory module to indicate the required operation.

Figure 1: CPU with the system bus.
There are three basic components of CPU: register bank, ALU and Control Unit. There

are several data movements between these units and for that an internal CPU bus is
used. Internal CPU bus is needed to transfer data between the various registers and the
ALU.

Figure 2 : Internal Structure of CPU

Stack Organization:

A useful feature that is included in the CPU of most computers is a stack or last in, first
out (LIFO) list. A stack is a storage device that stores information in such a manner that
the item stored last is the first item retrieved. The operation of a stack can be compared
to a stack of trays. The last tray placed on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an address register that
can only(after an initial value is loaded in to it).The register that hold the address for the
stack is called a stack pointer (SP) because its value always points at the top item in
stack. Contrary to a stack of trays where the tray it self may be taken out or inserted, the
physical registers of a stack are always available for reading or writing.

The two operation of stack are the insertion and deletion of items. The operation of
insertion is called PUSH because it can be thought of as the result of pushing a new item
on top. The operation of deletion is called POP because it can be thought of as the result
of removing one item so that the stack pops up. However, nothing is pushed or popped
in a computer stack. These operations are simulated by incrementing or decrementing
the stack pointer register.

Register stack:

A stack can be placed in a portion of a large memory or it can be organized as a
collection of a finite number of memory words or registers. Figure X shows the
organization of a 64-word register stack. The stack pointer register SP contains a binary
number whose value is equal to the address of the word that is currently on top of the
stack. Three items are placed in the stack: A, B, and C in the order. item C is on the top
of the stack so that the content of sp is now 3. To remove the top item, the stack is
popped by reading the memory word at address 3 and decrementing the content of SP.
Item B is now on top of the stack since SP holds address 2. To insert a new item, the
stack is pushed by incrementing SP and writing a word in the next higher location in the
stack. Note that item C has read out but not physically removed. This does not matter
because when the stack is pushed, a new item is written in its place.

In a 64-word stack, the stack pointer contains 6 bits because 26 =64. since SP has only

six bits, it cannot exceed a number grater than 63(111111 in binary). When 63 is
incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP can
accommodate only the six least significant bits. Similarly, when 000000 is decremented
by 1, the result is 111111. The one bit register Full is set to 1 when the stack is full, and
the one-bit register EMTY is set to 1 when the stack is empty of items. DR is the data
register that holds the binary data to be written in to or read out of the stack.

Figure 3: Block Diagram Of A 64-Word Stack

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP points to
the word at address o and the stack is marked empty and not full. if the stack is not full ,
a new item is inserted with a push operation. the push operation is implemented with the
following sequence of micro-operation.

SP ←SP + 1 (Increment stack pointer)
M(SP) ← DR (Write item on top of the stack)
if (sp=0) then (Full ← 1) (Check if stack is full)
Emty ← 0 (Marked the stack not empty)

The stac pointer is incremented so that it points to the address of the next-higher word.
A memory write operation inserts the word from DR into the top of the stack. Note that
SP holds the address of the top of the stack and that M(SP) denotes the memory word
specified by the address presently available in SP, the first item stored in the stack is at
address 1. The last item is stored at address 0, if SP reaches 0, the stack is full of item,
so FULLL is set to 1. This condition is reached if the top item prior to the last push was
in location 63 and after increment SP, the last item stored in location 0. Once an item is
stored in location 0, there are no more empty register in the stack. If an item is written in
the stack, Obviously the stack can not be empty, so EMTY is cleared to 0.

DR← M[SP] Read item from the top of stack

SP ← SP-1 Decrement stack Pointer
if(SP=0) then (Emty ← 1) Check if stack is empty
FULL ← 0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then decremented. if its
value reaches zero, the stack is empty, so Emty is set to 1. This condition is reached if
the item read was in location 1. once this item is read out , SP is decremented and
reaches the value 0, which is the initial value of SP. Note that if a pop operation reads
the item from location 0 and then SP is decremented, SP changes to 111111, which is
equal to decimal 63. In this configuration, the word in address 0 receives the last item in
the stack. Note also that an erroneous operation will result if the stack is pushed when
FULL=1 or popped when EMTY =1.

Memory Stack :

A stack can exist as a stand-alone unit as in figure 4 or can be implemented in a

random access memory attached to CPU. The implementation of a stack in the CPU is
done by assigning a portion of memory to a stack operation and using a processor
register as a stack pointer. Figure shows a portion of computer memory partitioned in to
three segment program, data and stack. The program counter PC points at the address of
the next instruction in the program. The address register AR points at an array of data.
The stack pointer SP points at the top of the stack. The three register are connected to a
common address bus, and either one can provide an address for memory. PC is used
during the fetch phase to read an instruction. AR is used during the execute phase to
read an operand. SP is used to push or POP items into or from the stack.

As show in figure :4 the initial value of SP is 4001 and the stack grows with

decreasing addresses. Thus the first item stored in the stack is at address 4000, the
second item is stored at address 3999, and the last address hat can be used for the stack
is 3000. No previous are available for stack limit checks. We assume that the items in
the stack communicate with a data register DR. A new item is inserted with the push
operation as follows.

SP← SP-1
M[SP] ← DR
The stack pointer is decremented so that it points at the address of the next word. A
Memory write operation insertion the word from DR into the top of the stack. A new
item is deleted with a pop operation as follows.
DR← M[SP]
SP←SP + 1
The top item is read from the stack in to DR. The stack pointer is then incremented to
point at the next item in the stack.
Most computer do not provide hardware to check for stack overflow (FULL) or
underflow (Empty). The stack limit can be checked by using two prossor register :

one to hold upper limit and other hold the lower limit. after the pop or push operation SP
is compared with lower or upper limit register.

Figure 4: computer memory with program, data and stack segments

INSTRUCTION FORMATS:

We know that a machine instruction has an opcode and zero or more operands.
Encoding an instruction set can be done in a variety of ways. Architectures are
differentiated from one another by the number of bits allowed per instruction (16, 32,
and 64 are the most common), by the number of operands allowed per instruction, and
by the types of instructions and data each can process. More specifically, instruction sets
are differentiated by the following features:
1. Operand storage in the CPU (data can be stored in a stack structure or in registers)
2. Number of explicit operands per instruction (zero, one, two, and three being the most
common)
3. Operand location (instructions can be classified as register-to-register, register-to-
memory or memory-to-memory, which simply refer to the combinations of operands
allowed per instruction)
4. Operations (including not only types of operations but also which instructions can
access memory and which cannot)
5. Type and size of operands (operands can be addresses, numbers, or even characters)
Number of Addresses:

One of the characteristics of the ISA(Industrial Standard Architecture) that shapes the
architecture is the number of addresses used in an instruction. Most operations can be
divided into binary or unary operations. Binary operations such as addition and

multiplication require two input operands whereas the unary operations such as the
logical NOT need only a single operand. Most operations produce a single result. There
are exceptions, however. For example, the division operation produces two outputs: a
quotient and a remainder. Since most operations are binary, we need a total of three
addresses: two addresses to specify the two input operands and one to specify where the
result should go.

Three-Address Machines:
In three-address machines, instructions carry all three addresses explicitly. The RISC
processors use three addresses. Table X1 gives some sample instructions of a three-
address machine.

In these machines, the C statement

A = B + C * D - E + F + A
is converted to the following code:

mult T,C,D ; T = C*D
add T,T,B ; T = B + C*D
sub T,T,E ; T = B + C*D - E

add T,T,F ; T = B + C*D - E + F
add A,T,A ; A = B + C*D - E + F + A

Table :T1 Sample three-address machine instructions

Instruction

Semantics
add dest,src1,src2 Adds the two values at src1 and src2 and

stores the result in dest
M(dest) = [src1] + [src2]

sub dest,src1,src2 Subtracts the second
source operand at src2 from the first at
src1 and stores the result in dest
M(dest) = [src1] - [src2]

mult dest,src1,src2 Multiplies the two values at src1
and src2 and stores the result in dest
M(dest) = [src1] * [src2]

We use the notation that each variable represents a memory address that stores the value
associated with that variable. This translation from symbol name to the memory address
is done by using a symbol table.

As you can see from this code, there is one instruction for each arithmetic operation.
Also notice that all instructions, barring the first one, use an address twice. In the middle
three instructions, it is the temporary T and in the last one, it is A. This is the motivation
for using two addresses, as we show next.

Two-Address Machines :

In two-address machines, one address doubles as a source and destination. Usually, we
use dest to indicate that the address is used for destination. But you should note that this
address also supplies one of the source operands. The Pentium is an example processor
that uses two addresses. Sample instructions of a two-address machine

On these machines, the C statement

A = B + C * D - E + F + A
is converted to the following code:

load T,C ; T = C
mult T,D ; T = C*D
add T,B ; T = B + C*D
sub T,E ; T = B + C*D - E
add T,F ; T = B + C*D - E + F
add A,T ; A = B + C*D - E + F + A
Table :T2 Sample Two-address machine instructions:

Since we use only two addresses, we use a load instruction to first copy the C value into
a temporary represented by T. If you look at these six instructions, you will notice that
the operand T is common. If we make this our default, then we don‟t need even two
addresses: we can get away with just one address.

One-Address Machines :

In the early machines, when memory was expensive and slow, a special set of registers
was used to provide an input operand as well as to receive the result from the ALU.
Because of this, these registers are called the accumulators. In most machines, there is
just a single accumulator register. This kind of design, called accumulator machines,
makes sense if memory is expensive.

In accumulator machines, most operations are performed on the contents of the

accumulator and the operand supplied by the instruction. Thus, instructions for these
machines need to specify only the address of a single operand. There is no need to store
the result in memory: this reduces the need for larger memory as well as speeds up the
computation by reducing the number of memory accesses. A few sample accumulator
machine instructions are shown in Table X3.

In these machines, the C statement
A = B + C * D - E + F + A

is converted to the following code:

load C ; load C into the accumulator
mult D ; accumulator = C*D
add B ; accumulator = C*D+B
sub E ; accumulator = C*D+B-E

add F ; accumulator = C*D+B-E+F

Instruction

Semantics

load dest,src Copies the value at src to dest
M(dest) = [src]

add dest,src Adds the two values at src and dest and
stores the result in dest
M(dest) = [dest] + [src]

sub dest,src Subtracts the second source operand at
src from the first at dest and
stores the result in dest
M(dest) = [dest] - [src]

mult dest,src Multiplies the two values at src and dest and
stores the result in dest
M(dest) = [dest] * [src]

add A ; accumulator = C*D+B-E+F+A
store A ; store the accumulator contents in A

Table :T3 Sample ONE-address machine instructions

Instruction Semantics
load addr Copies the value at address addr into the

 accumulator accumulator = [addr]
store addr Stores the value in the accumulator at the

 memory address addr
 M(addr) = accumulator

add addr Adds the contents of the accumulator and
 value at address addr
 accumulator = accumulator + [addr]

sub addr Subtracts the value at memory address
 addr from the contents of the accumulator
 accumulator = accumulator - [addr]

mult addr Multiplies the contents of the
 accumulator and value at address addr
 accumulator = accumulator * [addr]

Zero-Address Machines :
In zero-address machines, locations of both operands are assumed to be at a

default location. These machines use the stack as the source of the input operands
and the result goes back into the stack. Stack is a LIFO (last-in-first-out) data
structure that all processors support, whether or not they are zero-address
machines. As the name implies, the last item placed on the stack is the first item to
be taken out of the stack. A good analogy is the stack of trays you find in a
cafeteria.

All operations on this type of machine assume that the required input
operands are the top two values on the stack. The result of the operation is placed
on top of the stack. Table X4 gives some sample instructions for the stack
machines.

Table :T4 Sample Zero-address machine instructions

Instruction Semantics
push addr Places the value at address addr on top of the stack

push([addr])
pop addr Stores the top value on the stack at memory address addr

M(addr) = pop
add Adds the top two values on the stack and pushes the result

onto the stack
push(pop + pop)

sub Subtracts the second top value from the top value of the stack
and pushes the result onto the stack
push(pop – pop)

mult Multiplies the top two values in the stack and pushes the result
onto the stack
push(pop * pop)

Notice that the first two instructions are not zero-address instructions. These

two are special instructions that use a single address and are used to move data
between memory and stack.

All other instructions use the zero-address format. Let‟s see how the stack
machine translates the arithmetic expression we have seen in the previous
subsections. In these machines, the C statement

A = B + C * D - E + F + A
is converted to the following code:

push E ; <E>
push C ; <C, E>
push D ; <D, C, E>
mult ; <C*D, E>
push B ; <B, C*D, E>
add ; <B+C*D, E>
sub ; <B+C*D-E>
push F ; <F, B+D*C-E>
add ; <F+B+D*C-E>
push A ; <A, F+B+D*C-E>
add ; <A+F+B+D*C-E>
pop A ; < >

On the right, we show the state of the stack after executing each instruction.
The top element of the stack is shown on the left. Notice that we pushed E early
because we need to subtract it from (B+C*D).

Stack machines are implemented by making the top portion of the stack
internal to the processor. This is referred to as the stack depth. The rest of the stack
is placed in memory. Thus, to access the top values that are within the stack depth,
we do not have to access the memory. Obviously, we get better performance by
increasing the stack depth.

INSTRUCTION TYPES

Most computer instructions operate on data; however, there are some that do
not. Computer manufacturers regularly group instructions into the following
categories:
• Data movement
• Arithmetic
• Boolean
• Bit manipulation (shift and rotate)
• I/O
• Transfer of control
• Special purpose

Data movement instructions are the most frequently used instructions. Data
is moved from memory into registers, from registers to registers, and from registers
to memory, and many machines provide different instructions depending on the
source and destination. For example, there may be a MOVER instruction that always
requires two register operands, whereas a MOVE instruction allows one register and
one memory operand.

Some architectures, such as RISC, limit the instructions that can move data
to and from memory in an attempt to speed up execution. Many machines have
ariations of load, store, and move instructions to handle data of different sizes. For
example, there may be a LOADB instruction for dealing with bytes and a LOADW
instruction for handling words.

Arithmetic operations include those instructions that use integers and
floating point numbers. Many instruction sets provide different arithmetic
instructions for various data sizes. As with the data movement instructions, there are
sometimes different instructions for providing various combinations of register and
memory accesses in different addressing modes.

Boolean logic instructions perform Boolean operations, much in the same
way that arithmetic operations work. There are typically instructions for performing
AND, NOT, and often OR and XOR operations.

Bit manipulation instructions are used for setting and resetting individual bits
(or sometimes groups of bits) within a given data word. These include both arithmetic
and logical shift instructions and rotate instructions, both to the left and to the right.
Logical shift instructions simply shift bits to either the left or the right by a specified
amount, shifting in zeros from the opposite end. Arithmetic shift instructions, commonly
used to multiply or divide by 2, do not shift the leftmost bit, because this represents the
sign of the number. On a right arithmetic shift, the sign bit is replicated into the bit
position to its right. On a left arithmetic shift, values are shifted left, zeros are shifted in,
but the sign bit is never moved. Rotate instructions are simply shift instructions that shift
in the bits that are shifted out. For example, on a rotate left 1 bit, the leftmost bit is
shifted out and rotated around to become the rightmost bit.

I/O instructions vary greatly from architecture to architecture. The basic
schemes for handling I/O are programmed I/O, interrupt-driven I/O, and DMA
devices. These are covered in more detail in Chapter 5.

Control instructions include branches, skips, and procedure calls. Branching
can be unconditional or conditional. Skip instructions are basically branch
instructions with implied addresses. Because no operand is required, skip
instructions often use bits of the address field to specify different situations (recall
the Skipcond instruction used by MARIE). Procedure calls are special branch
instructions that automatically save the return address. Different machines use
different methods to save this address. Some store the address at a specific location
in memory, others store it in a register, while still others push the return address on a
stack. We have already seen that stacks can be used for other purposes.

Special purpose instructions include those used for string processing, high
level language support, protection, flag control, and cache management. Most
architectures provide instructions for string processing, including string
manipulation and searching.

Addressing Modes

We have examined the types of operands and operations that may be
specified by machine instructions. Now we have to see how is the address of an
operand specified, and how are the bits of an instruction organized to define the
operand addresses and operation of that instruction.

Addressing Modes: The most common addressing techniques are

• Immediate
• Direct
• Indirect
• Register
• Register Indirect
• Displacement
• Stack
All computer architectures provide more than one of these addressing modes.

The question arises as to how the control unit can determine which addressing mode
is being used in a particular instruction. Several approaches are used. Often,
different opcodes will use different addressing modes. Also, one or more bits in the
instruction format can be used as a mode field. The value of the mode field
determines which addressing mode is to be used.

What is the interpretation of effective address. In a system without virtual
memory, the effective address will be either a main memory address or a register. In
a virtual memory system, the effective address is a virtual address or a register. The
actual mapping to a physical address is a function of the paging mechanism and is
invisible to the programmer.

To explain the addressing modes, we use the following notation:

A = contents of an address field in the instruction that refers to a
memory

R = contents of an address field in the instruction that refers to a
register

EA =
actual (effective) address of the location containing the
referenced operand

(X) = contents of location X

Immediate Addressing:
The simplest form of addressing is immediate addressing, in which the

operand is actually present in the instruction:
OPERAND = A

This mode can be used to define and use constants or set initial values of
variables. The advantage of immediate addressing is that no memory reference other
than the instruction fetch is required to obtain the operand. The disadvantage is that
the size of the number is restricted to the size of the address field, which, in most
instruction sets, is small compared with the world length.

Figure 4.1: Immediate Addressing Mod
The instruction format for Immediate Addressing Mode is shown in the Figure 4.1.
Direct Addressing:

A very simple form of addressing is direct addressing, in which the address
field contains the effective address of the operand:

EA = A
It requires only one memory reference and no special calculation.

Figure 4.2: Direct Addressing Mode

Indirect Addressing:

With direct addressing, the length of the address field is usually less than the
word length, thus limiting the address range. One solution is to have the address
field refer to the address of a word in memory, which in turn contains a full-length
address of the operand. This is know as indirect addressing:

EA = (A)

Figure 4.3: Indirect Addressing Mode

Register Addressing:
Register addressing is similar to direct addressing. The only difference is that

the address field refers to a register rather than a main memory address:
EA = R

The advantages of register addressing are that only a small address field is
needed in the instruction and no memory reference is required. The disadvantage of
register addressing is that the address space is very limited.

Figure 4.4: Register Addressing Mode.

The exact register location of the operand in case of Register Addressing
Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is
present.

Register Indirect Addressing:
Register indirect addressing is similar to indirect addressing, except that the

address field refers to a register instead of a memory location. It requires only one
memory reference and no special calculation.

EA = (R)
Register indirect addressing uses one less memory reference than indirect

addressing. Because, the first information is available in a register which is nothing
but a memory address. From that memory location, we use to get the data or
information. In general, register access is much more faster than the memory access.

Diaplacement Addressing:
A very powerful mode of addressing combines the capabilities of direct

addressing and register indirect addressing, which is broadly categorized as
displacement addressing:

EA = A + (R)
Displacement addressing requires that the instruction have two address fields, at

least one of which is explicit. The value contained in one address field (value = A) is
used directly. The other address field, or an implicit reference based on opcode, refers to
a register whose contents are added to A to produce the effective address. The general
format of Displacement Addressing is shown in the Figure 4.6.
Three of the most common use of displacement addressing are:

• Relative addressing
• Base-register addressing
• Indexing

Figure 4.6: Displacement Addressing

Relative Addressing:
For relative addressing, the implicitly referenced register is the program

counter (PC). That is, the current instruction address is added to the address field to
produce the EA. Thus, the effective address is a displacement relative to the address
of the instruction.
Base-Register Addressing:

The reference register contains a memory address, and the address field
contains a displacement from that address. The register reference may be explicit or
implicit. In some implementation, a single segment/base register is employed and is
used implicitly. In others, the programmer may choose a register to hold the base
address of a segment, and the instruction must reference it explicitly.
Indexing:

The address field references a main memory address, and the reference
register contains a positive displacement from that address. In this case also the
register reference is sometimes explicit and sometimes implicit.

Generally index register are used for iterative tasks, it is typical that there is a
need to increment or decrement the index register after each reference to it. Because

Computer Organization

Computer Organization Page 59

this is such a common operation, some system will automatically do this as part of the same instruction cycle.
This is known as auto-indexing. We may get two types of auto-indexing: -one is auto-incrementing and the other one is -
auto-decrementing.

If certain registers are devoted exclusively to indexing, then auto-indexing can be invoked implicitly and
automatically. If general purpose register are used, the auto index operation may need to be signaled by a bit in the
instruction.

Auto-indexing using increment can be depicted as follows:

EA = A + (R)
R = (R) + 1

Auto-indexing using decrement can be depicted as follows:

EA = A + (R)
R = (R) - 1

In some machines, both indirect addressing and indexing are provided, and it is possible to employ both in the
same instruction. There are two possibilities: The indexing is performed either before or after the indirection.
If indexing is performed after the indirection, it is termed post indexing

EA = (A) + (R)

First, the contents of the address field are used to access a memory location containing an address. This address is then

indexed by the register value.

With pre indexing, the indexing is performed before the indirection:

EA = (A + (R)

An address is calculated, the calculated address contains not the operand, but the address of the operand.

Stack Addressing:
A stack is a linear array or list of locations. It is sometimes referred to as a pushdown list or last-in- first-out

queue. A stack is a reserved block of locations. Items are appended to the top of the stack so that, at any given time, the
block is partially filled. Associated with the stack is a pointer whose value is the address of the top of the stack. The
stack pointer is maintained in a register. Thus, references to stack locations in memory are in fact register indirect
addresses.

The stack mode of addressing is a form of implied addressing. The machine instructions need not include a
memory reference but implicitly operate on the top of the stack.

Computer Organization

Computer Organization Page 60

COMPUTER ARITHMETIC

Introduction:

Data is manipulated by using the arithmetic instructions in digital computers. Data is
manipulated to produce results necessary to give solution for the computation problems.
The Addition, subtraction, multiplication and division are the four basic arithmetic
operations. If we want then we can derive other operations by using these four operations.

To execute arithmetic operations there is a separate section called arithmetic processing
unit in central processing unit. The arithmetic instructions are performed generally on
binary or decimal data. Fixed-point numbers are used to represent integers or fractions.
We can have signed or unsigned negative numbers. Fixed-point addition is the simplest
arithmetic operation.

If we want to solve a problem then we use a sequence of well-defined steps. These steps
are collectively called algorithm. To solve various problems we give algorithms.

In order to solve the computational problems, arithmetic instructions are used in digital
computers that manipulate data. These instructions perform arithmetic calculations.

And these instructions perform a great activity in processing data in a digital computer.
As we already stated that with the four basic arithmetic operations addition, subtraction,
multiplication and division, it is possible to derive other arithmetic operations and solve
scientific problems by means of numerical analysis methods.

A processor has an arithmetic processor(as a sub part of it) that executes arithmetic
operations. The data type, assumed to reside in processor, registers during the execution
of an arithmetic instruction. Negative numbers may be in a signed magnitude or signed
complement representation. There are three ways of representing negative fixed point -
binary numbers signed magnitude, signed 1‟s complement or signed 2‟s complement.
Most computers use the signed magnitude representation for the mantissa.

Addition and Subtraction :

Addition and Subtraction with Signed –Magnitude Data

We designate the magnitude of the two numbers by A and B. Where the signed numbers
are added or subtracted, we find that there are eight different conditions to consider,
depending on the sign of the numbers and the operation performed. These conditions are
listed in the first column of Table 4.1. The other columns in the table show the actual
operation to be performed with the magnitude of the numbers. The last column is needed
to present a negative zero. In other words, when two equal numbers are subtracted, the
result should be +0 not -0. The algorithms for addition and subtraction are derived from
the table and can be stated as follows (the words parentheses should be used for the
subtraction algorithm).

Addition and Subtraction of Signed-Magnitude Numbers

Computer Organization

Computer Organization Page 61

Computer Arithmetic Addition and Subtraction

SIGNED MAGNITUDEADDITION AND SUBTRACTION

Addition: A + B ; A: Augend; B: Addend
Subtraction: A - B: A: Minuend; B: Subtrahend

Hardware Implementation Bs B Register

AVF Complementer M(Mode Control)

E Output Parallel Adder Input
Carry Carry

S

As A Register Load Sum

Computer Arithmetic Addition and Subtraction

Algorithm:

The flowchart is shown in Figure 7.1. The two signs A, and B, are
compared by an exclusive-OR gate.

If the output of the gate is 0 the signs
are identical; If it is 1, the signs are
different.

Hardware

Overflow

Algorithm
Subtract Add

Augend in AC
Addend in B

END END

SIGNED 2’S COMPLEMENT ADDITION AND SUBTRACTION

AC AC +B
V overflow

AC AC + B’+ 1
V overflow

Minuend in AC
Subtrahend in B

AC

V Complementer and
Parallel Adder

B Register

Operation

Add
Magnitude

Subtract Magnitude
When A>B When A<B When A=B

(+A) + (+B)
(+A) + (- B)

+(A + B)
+(A - B)

- (B - A)

+(A - B)

(- A) + (+B) - (A - B) +(B - A) +(A - B)
(- A) + (- B) - (A + B)

(+A) - (+B) +(A - B) - (B - A) +(A - B)
(+A) - (- B) +(A + B)

(- A) - (+B)
(- A) - (- B)

- (A + B)
- (A - B) +(B - A) +(A - B)

Computer Organization

Computer Organization Page 62

For an add operation, identical signs dictate that the magnitudes be
added. For a subtract operation, different signs dictate that the
magnitudes be added.

The magnitudes are added with a microoperation EA A + B, where EA is a
register that combines E and A. The carry in E after the addition constitutes an
overflow if it is equal to 1. The value of E is transferred into the add-overflow
flip-flop AVF.

The two magnitudes are subtracted if the signs are different for an add
operation or identical for a subtract operation. The magnitudes are subtracted
by adding A to the 2's complemented B. No overflow can occur if the numbers
are subtracted so AVF is cleared to 0.

1 in E indicates that A >= B and the number in A is the correct result. If this
numbs is zero, the sign A must be made positive to avoid a negative zero.

0 in E indicates that A < B. For this case it is necessary to take the 2's
complement of the value in A. The operation can be done with one
microoperation A A' +1.

However, we assume that the A register has circuits for microoperations
complement and increment, so the 2's complement is obtained from these two
microoperations.

In other paths of the flowchart, the sign of the result is the same as the sign of
A. so no change in A is required. However, when A < B, the sign of the result
is the complement of the original sign of A. It is then necessary to complement
A, to obtain the correct sign.

The final result is found in register A and its sign in As. The value in AVF
provides an overflow indication. The final value of E is immaterial.

Figure 7.2 shows a block diagram of the hardware for implementing the
addition and subtraction operations.

It consists of registers A and B and sign flip-flops As
and Bs. Subtraction is done by adding A to the 2's
complement of B.

The output carry is transferred to flip-flop E , where it can be checked to
determine the relative magnitudes of two numbers.

The add-overflow flip-flop AVF holds the overflow bit when A and B are added.

The A register provides other microoperations that may be needed when we
specify the sequence of steps in the algorithm.

Computer Organization

Computer Organization Page 63

Multiplication Algorithm:

In the beginning, the multiplicand is in B and the multiplier in Q. Their
corresponding signs are in Bs and Qs respectively. We compare the signs
of both A and Q and set to corresponding sign of the product since a
double-length product will be stored in registers A and Q. Registers A and
E are cleared and the sequence counter SC is set to the number of bits of
the multiplier. Since an operand must be stored with its sign, one bit of the
word will be occupied by the sign and the magnitude will consist of n-1
bits.

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the
multiplicand (B) is added to present partial product (A), 0 otherwise.
Register EAQ is then shifted once to the right to form the new partial
product. The sequence counter is decremented by 1 and its new value
checked. If it is not equal to zero, the process is repeated and a new partial
product is formed. When SC = 0 we stops the process.

Computer Organization

Computer Organization Page 64

Booth’s algorithm :

Booth algorithm gives a procedure for multiplying binary
integers in signed- 2‟s complement representation.

It operates on the fact that strings of 0‟s in the multiplier require no addition
but just

Computer Organization

Computer Organization Page 65

shifting, and a string of 1‟s in the multiplier from bit weight
2k to weight 2m can be treated as 2k+1 – 2m.

For example, the binary number 001110 (+14) has a string 1‟s
from 23 to 21 (k=3, m=1). The number can be represented as 2k+1 –
2m. = 24 – 21 = 16 – 2 = 14. Therefore, the multiplication M X 14,
where M is the multiplicand and 14 the multiplier, can be done
as M X 24 – M X 21.

Thus the product can be obtained by shifting the binary
multiplicand M four times to the left and subtracting M shifted
left once.

As in all multiplication schemes, booth algorithm
requires examination of the multiplier bits and shifting
of partial product.

Computer Organization

Prior to the shifting, the multiplicand may be added to the
partial product, subtracted from the partial, or left unchanged
according to the following rules:

1. The multiplicand is subtracted from the partial product upon
encountering the first least significant 1 in a string of 1‟s in
the multiplier.

2. The multiplicand is added to the partial product upon

encountering the first 0 in a string of 0‟s in the multiplier.

3. The partial product does not change when multiplier bit is
identical to the previous multiplier bit.

The algorithm works for positive or negative
multipliers in 2‟s complement representation.

This is because a negative multiplier ends with a string of 1‟s
and the last operation will be a subtraction of the appropriate
weight.

The two bits of the multiplier in Qn and Qn+1 are inspected.

If the two bits are equal to 10, it means that the first 1 in a string
of 1 's has been encountered. This requires a subtraction of the
multiplicand from the partial product in AC.

If the two bits are equal to 01, it means that the first 0 in a string
of 0's has been encountered. This requires the addition of the
multiplicand to the partial product in AC.

When the two bits are equal, the partial product does not change.

Division Algorithms

Division of two fixed-point binary numbers in signed magnitude
representation is performed with paper and pencil by a process of
successive compare, shift and subtract operations. Binary division is much
simpler than decimal division because here the quotient digits are either 0
or 1 and there is no need to estimate how many times the dividend or
partial remainder fits into the divisor. The division process is described in
Figure

Computer Organization Page 66

Computer Organization

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit number is smaller
than B, we again repeat the same process. Now the 6-bit number is greater than B, so we place a 1 for the
quotient bit in the sixth position above the dividend. Now we shift the divisor once to the

right and subtract it from the dividend. The difference is known
as a partial remainder because the division could have stopped
here to obtain a quotient of 1 and a remainder equal to the partial
remainder. Comparing a partial remainder with the divisor
continues the process. If the partial remainder is greater than or
equal to the divisor, the quotient bit is equal to
1. The divisor is then shifted right and subtracted from the partial
remainder. If the partial remainder is smaller than the divisor, the
quotient bit is 0 and no subtraction is needed. The divisor is
shifted once to the right in any case. Obviously the result gives
both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data

In hardware implementation for signed-magnitude data in a
digital computer, it is convenient to change the process slightly.
Instead of shifting the divisor to the right, two dividends, or
partial remainders, are shifted to the left, thus leaving the two
numbers in the required relative position. Subtraction is achieved
by adding A to the 2's complement of B. End carry gives the
information about the relative magnitudes.

The hardware required is identical to that of multiplication.
Register EAQ is now shifted to the left with 0 inserted into Qn
and the previous value of E is lost. The example is given in
Figure 4.10 to clear the proposed division process. The divisor is
stored in the B register and the double-length dividend is stored
in registers A and Q. The dividend is shifted to the left and the
divisor is subtracted by adding its 2's complement value. E

Computer Organization Page 67

Computer Organization

mputer Organization Page 68 Co
Floating-point Arithmetic operations :

Hardware Implementation for Signed-Magnitude Data

\Algorithm:

Example of Binary Division with Digital Hardware

Computer Organization

Computer Organization Page 69

In many high-level programming languages we have a facility for
specifying floating-point numbers. The most common way is by a real
declaration statement. High level programming languages must have a
provision for handling floating-point arithmetic operations. The operations
are generally built in the internal hardware. If no hardware is available, the
compiler must be designed with a package of floating-point software
subroutine. Although the hardware method is more expensive, it is much
more efficient than the software method. Therefore, floating- point
hardware is included in most computers and is omitted only in very small
ones.

Basic Considerations :

There are two part of a floating-point number in a computer - a mantissa m
and an exponent e. The two parts represent a number generated from
multiplying m times a radix r raised to the value of e. Thus

m x re

The mantissa may be a fraction or an integer. The position of the radix
point and the value of the radix r are not included in the registers. For
example, assume a fraction representation and a radix
10. The decimal number 537.25 is represented in a register with m = 53725
and e = 3 and is interpreted to represent the floating-point number

.53725 x 103

A floating-point number is said to be normalized if the most significant
digit of the mantissa in nonzero. So the mantissa contains the maximum
possible number of significant digits. We cannot normalize a zero because
it does not have a nonzero digit. It is represented in floating-point by all 0‟s
in the mantissa and exponent.

Floating-point representation increases the range of numbers for a given
register. Consider a computer with 48-bit words. Since one bit must be
reserved for the sign, the range of fixed-point integer numbers will be +
(247 – 1), which is approximately + 1014. The 48 bits can be used to
represent a floating-point number with 36 bits for the mantissa and 12 bits
for the exponent. Assuming fraction representation for the mantissa and
taking the two sign bits into consideration, the range of numbers that can be
represented is

+ (1 – 2-35) x 22047

Computer Organization

Computer Organization Page 70

This number is derived from a fraction that contains 35 1‟s, an exponent of
11 bits (excluding its sign), and because 211–1 = 2047. The largest number
that can be accommodated is approximately 10615. The mantissa that can
accommodated is 35 bits (excluding the sign) and if considered as an
integer it can store a number as large as (235 –1). This is approximately
equal to 1010, which is equivalent to a decimal number of 10 digits.

Computers with shorter word lengths use two or more words to represent a
floating-point number. An 8-bit microcomputer uses four words to
represent one floating-point number. One word of 8 bits are reserved for
the exponent and the 24 bits of the other three words are used in the
mantissa.

Arithmetic operations with floating-point numbers are more complicated
than with fixed-point numbers. Their execution also takes longer time and
requires more complex hardware. Adding or subtracting two numbers
requires first an alignment of the radix point since the exponent parts must
be made equal before adding or subtracting the mantissas. We do this
alignment by shifting one mantissa while its exponent is adjusted until it
becomes equal to the other exponent. Consider the sum of the following
floating-point numbers:

.5372400 x 102

+ .1580000 x 10-1

Floating-point multiplication and division need not do an alignment of the
mantissas. Multiplying the two mantissas and adding the exponents can
form the product. Dividing the mantissas and subtracting the exponents
perform division.

The operations done with the mantissas are the same as in fixed-point
numbers, so the two can share the same registers and circuits. The
operations performed with the exponents are compared and incremented
(for aligning the mantissas), added and subtracted (for multiplication) and
division), and decremented (to normalize the result). We can represent the
exponent in any one of the three representations - signed-magnitude, signed
2‟s complement or signed 1‟s complement.

Biased exponents have the advantage that they contain only positive
numbers. Now it becomes simpler to compare their relative magnitude
without bothering about their signs. Another advantage is that the smallest
possible biased exponent contains all zeros. The floating-point

Computer Organization

Computer Organization Page 71

Registersfor Floating Point Arithmetic

BR

E

AC

QR

FLOATING POINT ARITHMETIC OPERATIONS

Q Qs

B Bs

q

Parallel Adder
and Comparator Parallel Adder

b

F = m x re
where m: Mantissa

r: Radix
e: Exponent

representation of zero is then a zero mantissa and the smallest possible
exponent.
Register Configuration

The register configuration for floating-point operations is shown in figure
4.13. As a rule, the same registers and adder used for fixed-point arithmetic
are used for processing the mantissas. The difference lies in the way the
exponents are handled.

The register organization for floating-point operations is shown in Fig.
4.13. Three registers are there, BR, AC, and QR. Each register is
subdivided into two parts. The mantissa part has the same uppercase letter
symbols as in fixed-point representation. The exponent part may use
corresponding lower-case letter symbol.

Computer Arithmetic 14 Floating Point Arithmetic

As A1 A a

Computer Organization Prof. H. Yoon

Figure 4.13: Registers for Floating Point arithmetic operations

Assuming that each floating-point number has a mantissa in signed-
magnitude representation and a biased exponent. Thus the AC has a
mantissa whose sign is in As, and a magnitude that is in A. The diagram
shows the most significant bit of A, labeled by A1. The bit in his position
must be a 1 to normalize the number. Note that the symbol AC represents
the entire register, that is, the concatenation of As, A and a.

In the similar way, register BR is subdivided into Bs, B, and b and QR into

Computer Organization

Computer Organization Page 72

Qs, Q and q. A parallel-adder adds the two mantissas and loads the sum
into A and the carry into E. A separate parallel adder can be used for the
exponents. The exponents do not have a district sign bit because they are
biased but are represented as a biased positive quantity. It is assumed that
the floating- point number are so large that the chance of an exponent
overflow is very remote and so the exponent overflow will be neglected.
The exponents are also connected to a magnitude comparator that provides
three binary outputs to indicate their relative magnitude.

The number in the mantissa will be taken as a fraction, so they binary point
is assumed to reside to the left of the magnitude part. Integer representation
for floating point causes certain scaling problems during multiplication and
division. To avoid these problems, we adopt a fraction representation.

The numbers in the registers should initially be normalized. After each
arithmetic operation, the result will be normalized. Thus all floating-point
operands are always normalized.

Addition and Subtraction of Floating Point
Numbers

During addition or subtraction, the two floating-point operands are kept in
AC and BR. The sum or difference is formed in the AC. The algorithm can
be divided into four consecutive parts:

1. Check for zeros.

2. Align the mantissas.

3. Add or subtract the mantissas

4. Normalize the result

A floating-point number cannot be normalized, if it is 0. If this number is
used for computation, the result may also be zero. Instead of checking for
zeros during the normalization process we check for zeros at the beginning
and terminate the process if necessary. The alignment of the mantissas
must be carried out prior to their operation. After the mantissas are added
or subtracted, the result may be un-normalized. The normalization
procedure ensures that the result is normalized before it is transferred to
memory.

If the magnitudes were subtracted, there may be zero or may have an underflow in
the result. If the mantissa is equal to zero the entire floating-point number in the

Computer Organization

Computer Organization Page 73

AC is cleared to zero. Otherwise, the mantissa must have at least one bit that is
equal to 1. The mantissa has an underflow if the most significant bit in position
A1, is 0. In that case, the mantissa is shifted left and the exponent decremented.
The bit in A1 is checked again and the process is repeated until A1 = 1. When A1
= 1, the mantissa is normalized and the operation is completed.

Computer Organization

Computer Organization Page 74

Algorithm for Floating Point Addition and Subtraction

Computer Organization

Computer Organization Page 75

Multiplication:

Computer Arithmetic 17 Floating Point Arithmetic

FLOATING POINT DIVISION
 BR Divisor

AC Dividend

 =0 BR
 0

 =0 AC

0

QR 0

divide
by 0

 1 E 0

A>=B A<B

A A+B A A+B
shr A a
 a+1

a a+b’+1
a a+bias
q a

Divide Magnitude of mantissa as
in fixed point numbers

Qs As + Bs
Q 0 SC
 n-1

EA A+B’+1

Computer Organization

Computer Organization Page 76

UNIT – 4

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data
transfer Modes of Transfer, Priority Interrupt Direct memory Access, Input –Output Processor (IOP)
Pipeline And Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction
Pipeline, Dependencies, Vector Processing.

Introduction:
The I/O subsystem of a computer provides an efficient mode of communication between the central
system and the outside environment. It handles all the input-output operations of the computer
system.

Peripheral Devices
Input or output devices that are connected to computer are called peripheral devices. These devices
are designed to read information into or out of the memory unit upon command from the CPU and are
considered to be the part of computer system. These devices are also called peripherals.

For example: Keyboards, display units and printers are common peripheral devices.

There are three types of peripherals:

1. Input peripherals : Allows user input, from the outside world to the computer. Example:

Keyboard, Mouse etc.

2. Output peripherals: Allows information output, from the computer to the outside world.

Example: Printer, Monitor etc

3. Input-Output peripherals: Allows both input(from outised world to computer) as well as,

output(from computer to the outside world). Example: Touch screen etc.

Interfaces

Interface is a shared boundary btween two separate components of the computer system which can be
used to attach two or more components to the system for communication purposes.

There are two types of interface:

1. CPU Inteface

2. I/O Interface

Let's understand the I/O Interface in details,

Computer Organization

Computer Organization Page 77

Input-Output Interface
Peripherals connected to a computer need special communication links for interfacing with CPU. In
computer system, there are special hardware components between the CPU and peripherals to control
or manage the input-output transfers. These components are called input-output interface
units because they provide communication links between processor bus and peripherals. They
provide a method for transferring information between internal system and input-output devices.

Asynchronous Data Transfer
We know that, the internal operations in individual unit of digital system are synchronized by means
of clock pulse, means clock pulse is given to all registers within a unit, and all data transfer among
internal registers occur simultaneously during occurrence of clock pulse.Now, suppose any two units
of digital system are designed independently such as CPU and I/O interface.

And if the registers in the interface(I/O interface) share a common clock with CPU registers, then
transfer between the two units is said to be synchronous.But in most cases, the internal timing in each
unit is independent from each other in such a way that each uses its own private clock for its internal
registers.In that case, the two units are said to be asynchronous to each other, and if data transfer
occur between them this data transfer is said to be Asynchronous Data Transfer.

But, the Asynchronous Data Transfer between two independent units requires that control signals be
transmitted between the communicating units so that the time can be indicated at which they send
data.

This asynchronous way of data transfer can be achieved by two methods:

1. One way is by means of strobe pulse which is supplied by one of the units to other
unit.When transfer has to occur.This method is known as “Strobe Control”.
2. Another method commonly used is to accompany each data item being transferred
with a control signal that indicates the presence of data in the bus.The unit receiving the data
item responds with another signal to acknowledge receipt of the data.This method of data
transfer between two independent units is said to be “Handshaking”.

The strobe pulse and handshaking method of asynchronous data transfer are not restricted to I/O
transfer.In fact, they are used extensively on numerous occasion requiring transfer of data between
two independent units.So, here we consider the transmitting unit as source and receiving unit as
destination.
As an example: The CPU, is the source during an output or write transfer and is the destination unit
during input or read transfer.

And thus, the sequence of control during an asynchronous transfer depends on whether the transfer is
initiated by the source or by the destination.

So, while discussing each way of data transfer asynchronously we see the sequence of control in both
terms when it is initiated by source or when it is initiated by destination.In this way, each way of data
transfer, can be further divided into parts, source initiated and destination initiated.

We can also specify, asynchronous transfer between two independent units by means of a timing
diagram that shows the timing relationship that exists between the control and the data buses.

Computer Organization

Computer Organization Page 78

Now, we will discuss each method of asynchronous data transfer in detail one by one.

1. Strobe Control:

The Strobe Control method of asynchronous data transfer employs a single control line to time
each transfer .This control line is also known as strobe and it may be achieved either by source or

destination, depending on which initiate transfer.

Source initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by source unit is shown in figure below:

In block diagram we see that strobe is initiated by source, and as shown in timing diagram, the
source unit first places the data on the data bus.After a brief delay to ensure that the data settle to a
steady value, the source activates a strobe pulse.The information on data bus and strobe control signal
remain in the active state for a sufficient period of time to allow the destination unit to receive the
data.Actually, the destination unit, uses a falling edge of strobe control to transfer the contents of
data bus to one of its internal registers.The source removes the data from the data bus after it disables
its strobe pulse.New valid data will be available only after the strobe is enabled again.

Destination-initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by destination is shown in figure below:

Computer Organization

Computer Organization Page 79

In block diagram, we see that, the strobe initiated by destination, and as shown in timing diagram,
the destination unit first activates the strobe pulse, informing the source to provide the data.The
source unit responds by placing the requested binary information on the data bus.The data must be
valid and remain in the bus long enough for the destination unit to accept it.The falling edge of strobe
pulse can be used again to trigger a destination register.The destination unit then disables
the strobe.And source removes the data from data bus after a per determine time interval.

Now, actually in computer, in the first case means in strobe initiated by source - the strobe may be

a memory-write control signal from the CPU to a memory unit.The source, CPU, places the word on
the data bus and informs the memory unit, which is the destination, that this is a write operation.

And in the second case i.e, in the strobe initiated by destination - the strobe may be a memory read

control from the CPU to a memory unit.The destination, the CPU, initiates the read operation to
inform the memory, which is a source unit, to place selected word into the data bus.

2. Handshaking:

The disadvantage of strobe method is that source unit that initiates the transfer has no way of
knowing whether the destination has actually received the data that was placed in the

bus.Similarly, a destination unit that initiates the transfer has no way of knowing whether the
source unit, has actually placed data on the bus.

This problem can be solved by handshaking method.

Hand shaking method introduce a second control signal line that provides a replay to the unit that

initiates the transfer.

In it, one control line is in the same direction as the data flow in the bus from the source to
destination.It is used by source unit to inform the destination unit whether there are valid data

in the bus.The other control line is in the other direction from destination to the source.It is used
by the destination unit to inform the source whether it can accept data.And in it also,
sequence of control depends on unit that initiate transfer.Means sequence of control depends
whether transfer is initiated by source and destination.Sequence of control in both of them are
described below:

Computer Organization

Computer Organization Page 80

Source initiated Handshaking:

The source initiated transfer using handshaking lines is shown in figure below:

In its block diagram, we se that two handshaking lines are "data valid", which is generated by the
source unit, and "data accepted", generated by the destination unit.

The timing diagram shows the timing relationship of exchange of signals between the two

units.Means as shown in its timing diagram, the source initiates a transfer by placing data on the bus
and enabling its data valid signal.The data accepted signal is then activated by destination unit after it
accepts the data from the bus.The source unit then disable its data valid signal which invalidates the
data on the bus.After this, the destination unit disables its data accepted signal and the system goes
into initial state.The source unit does not send the next data item until after the destination unit shows
its readiness to accept new data by disabling the data accepted signal.

This sequence of events described in its sequence diagram, which shows the above sequence in
which the system is present, at any given time.

Destination initiated handshaking:

The destination initiated transfer using handshaking lines is shown in figure below:

Computer Organization

Computer Organization Page 81

In its block diagram, we see that the two handshaking lines are "data valid", generated by the
source unit, and "ready for data" generated by destination unit.Note that the name of signal data
accepted generated by destination unit has been changed to ready for data to reflect its new meaning.

In it, transfer is initiated by destination, so source unit does not place data on data bus until it

receives ready for data signal from destination unit.After that, hand shaking process is some as that of
source initiated.

The sequence of event in it are shown in its sequence diagram and timing relationship between

signals is shown in its timing diagram.

Thus, here we can say that, sequence of events in both cases would be identical.If we consider
ready for data signal as the complement of data accept.Means, the only difference between source
and destination initiated transfer is in their choice of initial state.

Modes of I/O Data Transfer
Data transfer between the central unit and I/O devices can be handled in generally three types of

modes which are given below:
1. Programmed I/O
2. Interrupt Initiated I/O
3. Direct Memory Access

Computer Organization

Computer Organization Page 82

Programmed I/O
Programmed I/O instructions are the result of I/O instructions written in computer program. Each

data item transfer is initiated by the instruction in the program.

Usually the program controls data transfer to and from CPU and peripheral. Transferring data under
programmed I/O requires constant monitoring of the peripherals by the CPU.

Interrupt Initiated I/O

In the programmed I/O method the CPU stays in the program loop until the I/O unit indicates that
it is ready for data transfer. This is time consuming process because it keeps the processor busy
needlessly.

This problem can be overcome by using interrupt initiated I/O. In this when the interface determines
that the peripheral is ready for data transfer, it generates an interrupt. After receiving the interrupt signal,
the CPU stops the task which it is processing and service the I/O transfer and then returns back to its
previous processing task.

Direct Memory Access

Removing the CPU from the path and letting the peripheral device manage the memory buses
directly would improve the speed of transfer. This technique is known as DMA.

In this, the interface transfer data to and from the memory through memory bus. A DMA controller
manages to transfer data between peripherals and memory unit.

Many hardware systems use DMA such as disk drive controllers, graphic cards, network cards and sound
cards etc. It is also used for intra chip data transfer in multicore processors. In DMA, CPU would initiate
the transfer, do other operations while the transfer is in progress and receive an interrupt from the DMA
controller when the transfer has been completed.

Priority Interrupt

A priority interrupt is a system which decides the priority at which various devices, which
generates the interrupt signal at the same time, will be serviced by the CPU. The system has authority to
decide which conditions are allowed to interrupt the CPU, while some other interrupt is being serviced.
Generally, devices with high speed transfer such as magnetic disks are given high priority and slow
devices such as keyboards are given low priority.

When two or more devices interrupt the computer simultaneously, the computer services the device with
the higher priority first.

Computer Organization

Computer Organization Page 83

Interrupt

BG

BR
RD

CPU
Random-access
memory unit (RAM)

WR Addr Data

Read control

Write control

Data bus

Address bus

RD WR Addr Data

Address
select

RD
DS
RS
BR
BG

WR Addr Data
DMA ack.

DMA
Controller

 DMA request

Interrupt

I/O
Peripheral

device

DIRECT MEMORY ACCESS

Block of data transfer from high speed devices, Drum, Disk, Tape

CPU bus signals for DMA transfer

Bus request

Bus granted

Block diagram of DMA controller
Address bus

Data bus

Address bus
Data bus
Read
Write

High-impedence
(disabled)
when BG is

enabled

DMA select

Register select
Read

Write
Bus request

Bus grant

DS
RS
RD

Control
logic

BR

BG

Interrupt Interrupt DMA request
 DMA acknowledge to I/O device

* DMA controller - Interface which allows I/O transfer directly between

Memory and Device, freeing CPU for other tasks

* CPU initializes DMA Controller by sending memory

address and the block size(number of words)

DMA TRANSFER

BR
CPU

BG

ABUS
DBUS

RD
WR

Internal Bus

Address bus
buffers

Control register

Word count register

Address register

Data bus
buffers

WR

Computer Organization

Computer Organization Page 84

Input/output Processor
An input-output processor (IOP) is a processor with direct memory access capability. In this, the
computer system is divided into a memory unit and number of processors.

Each IOP controls and manage the input-output tasks. The IOP is similar to CPU except that it
handles only the details of I/O processing. The IOP can fetch and execute its own instructions. These
IOP instructions are designed to manage I/O transfers only.

Block Diagram Of I/O Processor:

Below is a block diagram of a computer along with various I/O Processors. The memory unit occupies the
central position and can communicate with each processor.

The CPU processes the data required for solving the computational tasks. The IOP provides a path for
transfer of data between peripherals and memory. The CPU assigns the task of initiating the I/O program.

The IOP operates independent from CPU and transfer data between peripherals and memory.

The communication between the IOP and the devices is similar to the program control method of transfer.
And the communication with the memory is similar to the direct memory access method.

In large scale computers, each processor is independent of other processors and any processor can initiate
the operation.

The CPU can act as master and the IOP act as slave processor. The CPU assigns the task of initiating
operations but it is the IOP, who executes the instructions, and not the CPU. CPU instructions provide
operations to start an I/O transfer. The IOP asks for CPU through interrupt.

Instructions that are read from memory by an IOP are also called commands to distinguish them from
instructions that are read by CPU. Commands are prepared by programmers and are stored in memory.
Command words make the program for IOP. CPU informs the IOP where to find the commands in
memory.

Computer Organization

Computer Organization Page 85

Pipelining and vector processing

Parallel processing
Execution of Concurrent Events in the computing process to achieve faster Computational Speed

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

PARALLEL COMPUTERS
Architectural Classification

Flynn's classification

» Based on the multiplicity of Instruction Streams and Data Streams

» Instruction Stream

Sequence of Instructions read from memory

» Data Stream

Operations performed on the data in the processor

What is Pipelining?
Pipelining is the process of accumulating instruction from the processor through a pipeline. It

allows storing and executing instructions in an orderly process. It is also known as pipeline
processing.

Pipelining is a technique where multiple instructions are overlapped during execution. Pipeline is
divided into stages and these stages are connected with one another to form a pipe like structure.
Instructions enter from one end and exit from another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register followed by a combinational circuit.
The register is used to hold data and combinational circuit performs operations on it. The output of
combinational circuit is applied to the input register of the next segment.

Computer Organization

Computer Organization Page 86

Pipeline system is like the modern day assembly line setup in factories. For example in a car
manufacturing industry, huge assembly lines are setup and at each point, there are robotic arms to
perform a certain task, and then the car moves on ahead to the next arm.

Types of Pipeline
It is divided into 2 categories:

1. Arithmetic Pipeline

2. Instruction Pipeline

Arithmetic Pipeline
Arithmetic pipelines are usually found in most of the computers. They are used for floating point
operations, multiplication of fixed point numbers etc. For example: The input to the Floating Point Adder
pipeline is:

X = A*2^a

Y = B*2^b

Here A and B are mantissas (significant digit of floating point numbers), while a and b are exponents.

The floating point addition and subtraction is done in 4 parts:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract mantissas

4. Produce the result.

Registers are used for storing the intermediate results between the above operations.

Computer Organization

Computer Organization Page 87

Instruction Pipeline
In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an
instruction cycle. This type of technique is used to increase the throughput of the computer system.

An instruction pipeline reads instruction from the memory while previous instructions are being executed
in other segments of the pipeline. Thus we can execute multiple instructions simultaneously. The pipeline
will be more efficient if the instruction cycle is divided into segments of equal duration.

Advantages of Pipelining
1. The cycle time of the processor is reduced.
2. It increases the throughput of the system
3. It makes the system reliable.

Disadvantages of Pipelining
1. The design of pipelined processor is complex and costly to manufacture.
2. The instruction latency is more.

Vector(Array) Processing
There is a class of computational problems that are beyond the capabilities of a conventional

computer. These problems require vast number of computations on multiple data items, that will take a
conventional computer(with scalar processor) days or even weeks to complete.

Such complex instructions, which operates on multiple data at the same time, requires a better way of
instruction execution, which was achieved by Vector processors.

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also, simple
instructions like ADD A to B, and store into C are not practically efficient.

Addresses are used to point to the memory location where the data to be operated will be found, which
leads to added overhead of data lookup. So until the data is found, the CPU would be sitting ideal, which
is a big performance issue.

Hence, the concept of Instruction Pipeline comes into picture, in which the instruction passes through
several sub-units in turn. These sub-units perform various independent functions, for example:
the first one decodes the instruction, the second sub-unit fetches the data and the thirdsub-unit performs
the math itself. Therefore, while the data is fetched for one instruction, CPU does not sit idle, it rather
works on decoding the next instruction set, ending up working like an assembly line.

Vector processor, not only use Instruction pipeline, but it also pipelines the data, working on multiple data
at the same time.

A normal scalar processor instruction would be ADD A, B, which leads to addition of two operands, but
what if we can instruct the processor to ADD a group of numbers(from 0 to n memory location) to another
group of numbers(lets say, n to k memory location). This can be achieved by vector processors.

In vector processor a single instruction, can ask for multiple data operations, which saves time, as
instruction is decoded once, and then it keeps on operating on different data items.

Computer Organization

Computer Organization Page 88

Applications of Vector Processors
Computer with vector processing capabilities are in demand in specialized applications. The following are
some areas where vector processing is used:

1. Petroleum exploration.

2. Medical diagnosis.

3. Data analysis.

4. Weather forecasting.

5. Aerodynamics and space flight simulations.

6. Image processing.

7. Artificial intelligence.

Computer Organization

Computer Organization Page 89

UNIT – 5
Memory Organization: Memory Hierarchy, Main Memory –RAM And ROM Chips, Memory
Address map, Auxiliary memory-magnetic Disks, Magnetic tapes, Associate Memory,-Hardware
Organization, Match Logic, Cache Memory –Associative Mapping , Direct Mapping, Set associative
mapping ,Writing in to cache and cache Initialization , Cache Coherence ,Virtual memory-Address
Space and memory Space ,Address mapping using pages, Associative memory page table ,page
Replacement .

Memory Hierarchy

The total memory capacity of a computer can be visualized by hierarchy of components. The

memory hierarchy system consists of all storage devices contained in a computer system from the
slow Auxiliary Memory to fast Main Memory and to smaller Cache memory.

Auxillary memory access time is generally 1000 times that of the main memory, hence it is at the
bottom of the hierarchy.

The main memory occupies the central position because it is equipped to communicate directly with
the CPU and with auxiliary memory devices through Input/output processor (I/O).

When the program not residing in main memory is needed by the CPU, they are brought in from
auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary
memory to provide space in main memory for other programs that are currently in use.

The cache memory is used to store program data which is currently being executed in the CPU.
Approximate access time ratio between cache memory and main memory is about 1 to 7~10

Computer Organization

Computer Organization Page 90

Memory Access Methods
Each memory type, is a collection of numerous memory locations. To access data from any memory,
first it must be located and then the data is read from the memory location. Following are the methods
to access information from memory locations:

1. Random Access: Main memories are random access memories, in which each memory

location has a unique address. Using this unique address any memory location can be reached in

the same amount of time in any order.

2. Sequential Access: This methods allows memory access in a sequence or in order.

3. Direct Access: In this mode, information is stored in tracks, with each track having a separate

read/write head.

Main Memory

The memory unit that communicates directly within the CPU, Auxillary memory and Cache
memory, is called main memory. It is the central storage unit of the computer system. It is a large and
fast memory used to store data during computer operations. Main memory is made up
of RAM and ROM, with RAM integrated circuit chips holing the major share.

 RAM: Random Access Memory

o DRAM: Dynamic RAM, is made of capacitors and transistors, and must be refreshed

every 10~100 ms. It is slower and cheaper than SRAM.

o SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until

powered off.

Computer Organization

Computer Organization Page 91

o NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example: Flash

memory.

 ROM: Read Only Memory, is non-volatile and is more like a permanent storage for

information. It also stores the bootstrap loader program, to load and start the operating system

when computer is turned on. PROM(Programmable ROM), EPROM(Erasable PROM)

and EEPROM(Electrically Erasable PROM) are some commonly used ROMs.

Memory Address map:

 The addressing of memory can establish by means of a table that specifies the memory
address assigned to each chip.

 The table, called a memory address map, is a pictorial representation of assigned address
space for each chip in the system, shown in the table.

 To demonstrate with a particular example, assume that a computer system needs 512 bytes of
RAM and 512 bytes of ROM.

 The RAM and ROM chips to be used specified in figures.

 The component column specifies whether a RAM or a ROM chip used.
 Moreover, The hexadecimal address column assigns a range of hexadecimal equivalent

addresses for each chip.
 The address bus lines listed in the third column.
 Although there 16 lines in the address bus, the table shows only 10 lines because the other 6

not used in this example and assumed to be zero.
 The small x‟s under the address bus lines designate those lines that must connect to the

address inputs in each chip.
 Moreover, The RAM chips have 128 bytes and need seven address lines. The ROM chip has

512 bytes and needs 9 address lines.
 The x‟s always assigned to the low-order bus lines: lines 1 through 7 for the RAM. And lines

1 through 9 for the ROM.
 It is now necessary to distinguish between four RAM chips by assigning to each a different

address. For this particular example, we choose bus lines 8 and 9 to represent four distinct
binary combinations.

 Also, The table clearly shows that the nine low-order bus lines constitute a memory space for
RAM equal to 29 = 512 bytes.

 The distinction between a RAM and ROM address done with another bus line. Here we
choose line 10 for this purpose.

 When line 10 0, the CPU selects a RAM, and when this line equal to 1, it selects the ROM.

Computer Organization

Computer Organization Page 92

Auxiliary Memory

Devices that provide backup storage are called auxiliary memory. For example: Magnetic
disks and tapes are commonly used auxiliary devices. Other devices used as auxiliary memory are
magnetic drums, magnetic bubble memory and optical disks.

It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Cache Memory

The data or contents of the main memory that are used again and again by CPU, are stored in
the cache memory so that we can easily access that data in shorter time.

Whenever the CPU needs to access memory, it first checks the cache memory. If the data is not found
in cache memory then the CPU moves onto the main memory. It also transfers block of recent data
into the cache and keeps on deleting the old data in cache to accomodate the new one.

Hit Ratio

The performance of cache memory is measured in terms of a quantity called hit ratio. When
the CPU refers to memory and finds the word in cache it is said to produce a hit. If the word is not
found in cache, it is in main memory then it counts as a miss.

The ratio of the number of hits to the total CPU references to memory is called hit ratio.

Hit Ratio = Hit/(Hit + Miss)

Associative Memory

It is also known as content addressable memory (CAM). It is a memory chip in which each
bit position can be compared. In this the content is compared in each bit cell which allows very fast
table lookup. Since the entire chip can be compared, contents are randomly stored without
considering addressing scheme. These chips have less storage capacity than regular memory chips.

Memory Mapping and Concept of Virtual Memory

The transformation of data from main memory to cache memory is called mapping. There are 3
main types of mapping:

 Associative Mapping

 Direct Mapping

 Set Associative Mapping

Associative Mapping
The associative memory stores both address and data. The address value of 15 bits is 5 digit

octal numbers and data is of 12 bits word in 4 digit octal number. A CPU address of 15 bits is placed
in argument register and the associative memory is searched for matching address.

Computer Organization

Computer Organization Page 93

Direct Mapping
The CPU address of 15 bits is divided into 2 fields. In this the 9 least significant bits constitute

the index field and the remaining 6 bits constitute the tag field. The number of bits in index field is
equal to the number of address bits required to access cache memory.

Set Associative Mapping
The disadvantage of direct mapping is that two words with same index address can't reside in cache
memory at the same time. This problem can be overcome by set associative mapping.

In this we can store two or more words of memory under the same index address. Each data word is
stored together with its tag and this forms a set.

Computer Organization

Computer Organization Page 94

Replacement Algorithms
Data is continuously replaced with new data in the cache memory using replacement algorithms.

Following are the 2 replacement algorithms used:

 FIFO - First in First out. Oldest item is replaced with the latest item.

 LRU - Least Recently Used. Item which is least recently used by CPU is removed.

Writing in to cache and cache Initialization:

The benefit of write-through to main memory is that it simplifies the design of the computer
system. With write-through, the main memory always has an up-to-date copy of the line. So when a
read is done, main memory can always reply with the requested data.

If write-back is used, sometimes the up-to-date data is in a processor cache, and sometimes it is in
main memory. If the data is in a processor cache, then that processor must stop main memory from
replying to the read request, because the main memory might have a stale copy of the data. This is
more complicated than write-through.

Also, write-through can simplify the cache coherency protocol because it doesn't need
the Modifystate. The Modify state records that the cache must write back the cache line before it
invalidates or evicts the line. In write-through a cache line can always be invalidated without writing
back since memory already has an up-to-date copy of the line.

Cache Coherence:
In a shared memory multiprocessor with a separate cache memory for each processor , it is possible
to have many copies of any one instruction operand : one copy in the main memory and one in
each cache memory. When one copy of an operand is changed, the other copies of the operand must
be changed also. Cache coherence is the discipline that ensures that changes in the values of shared
operands are propagated throughout the system in a timely fashion.

Virtual Memory
Virtual memory is the separation of logical memory from physical memory. This separation provides
large virtual memory for programmers when only small physical memory is available.

Computer Organization

Computer Organization Page 95

Virtual memory is used to give programmers the illusion that they have a very large memory even
though the computer has a small main memory. It makes the task of programming easier because the
programmer no longer needs to worry about the amount of physical memory available.

Address mapping using pages:

 The table implementation of the address mapping is simplified if the information in the

address space. And the memory space is each divided into groups of fixed size.
 Moreover, The physical memory is broken down into groups of equal size called blocks,

which may range from 64 to 4096 words each.
 The term page refers to groups of address space of the same size.
 Also, Consider a computer with an address space of 8K and a memory space of 4K.
 If we split each into groups of 1K words we obtain eight pages and four blocks as shown in

the figure.
 At any given time, up to four pages of address space may reside in main memory in any one

of the four blocks.

Computer Organization

Computer Organization Page 96

Associative memory page table:
The implementation of the page table is vital to the efficiency of the virtual memory

technique, for each memory reference must also include a reference to the page table. The fastest
solution is a set of dedicated registers to hold the page table but this method is impractical for large
page tables because of the expense. But keeping the page table in main memory could cause
intolerable delays because even only one memory access for the page table involves a slowdown of
100 percent and large page tables can require more than one memory access. The solution is to
augment the page table with special high-speed memory made up of associative registers or
translation look aside buffers (TLBs) which are called ASSOCIATIVE MEMORY.
Page replacement

The advantage of virtual memory is that processes can be using more memory than exists in
the machine; when memory is accessed that is not present (a page fault), it must be paged in
(sometimes referred to as being "swapped in", although some people reserve "swapped in to refer to
bringing in an entire address space).

Swapping in pages is very expensive (it requires using the disk), so we'd like to avoid page faults as
much as possible. The algorithm that we use to choose which pages to evict to make space for the
new page can have a large impact on the number of page faults that occur.

 SUBJECT IN-CHARGE

 MRS. LEENA R. WAGHULDE

