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UNIT I 

Basic Structure Of Computers: Computer Types, Functional unit, Basic OPERATIONAL concepts, 
Bus structures, Software, Performance, multiprocessors and multi computers. 
Data Representation: Fixed Point Representation. Floating – Point Representation. Error Detection 
codes. 
Register Transfer Language And Micro Operations: Register Transfer language. Register 
Transfer Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro 
operations, Arithmetic logic shift unit. 

 

Basic Structure of Computers 
 

Computer Architecture in general covers three aspects of computer design namely: Computer  
Hardware, Instruction set Architecture and Computer Organization. 
Computer hardware consists of electronic circuits, displays, magnetic and optical storage 
media and communication facilities. 
Instruction set Architecture is programmer visible machine interface such as instruction set, 
registers, memory organization and exception handling. Two main approaches are mainly 
CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer) 
Computer Organization includes the high level aspects of a design, such as memory system, the 
bus structure and the design of the internal CPU. 

 
Computer Types 

Computer is a fast electronic calculating machine which accepts digital input, processes it 
according to the internally stored instructions (Programs) and produces the result on the 
output device. The internal operation of the computer can be as depicted in the figure below: 

Figure 1: Fetch, Decode and Execute steps in a Computer System 
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The computers can be classified into various categories as given below: 
 

 Micro Computer 
 Laptop Computer 
 Work Station 
 Super Computer 
 Main Frame 
 Hand Held 
 Multi core 

 
Micro Computer: A personal computer; designed to meet the computer needs of an 
individual. Provides access to a wide variety of computing applications, such as word 
processing, photo editing, e-mail, and internet. 

Laptop Computer: A portable, compact computer that can run on power supply or a battery 
unit. All components are integrated as one compact unit. It is generally more expensive than a 
comparable desktop. It is also called a Notebook. 

Work Station: Powerful desktop computer designed for specialized tasks. Generally used for 
tasks that requires a lot of processing speed. Can also be an ordinary personal computer 
attached to a LAN (local area network). 

Super Computer: A computer that is considered to be fastest in the world. Used to execute 
tasks that would take lot of time for other computers. For Ex: Modeling weather systems, 
genome sequence, etc (Refer site: http://www.top500.org/) 

Main Frame: Large expensive computer capable of simultaneously processing data for 
hundreds or thousands of users. Used to store, manage, and process large amounts of data that 
need to be reliable, secure, and centralized. 

Hand Held: It is also called a PDA (Personal Digital Assistant). A computer that fits into a 
pocket, runs on batteries, and is used while holding the unit in your hand. Typically used as 
an appointment book, address book, calculator and notepad. 

Multi Core: Have Multiple Cores – parallel computing platforms. Many Cores or computing 
elements in a single chip. Typical Examples: Sony Play station, Core 2 Duo, i3, i7 etc. 

 
GENERATION OF COMPUTERS 

Development of technologies used to fabricate the processors, memories and I/O units of 
the computers has been divided into various generations as given below: 

 First generation 
 Second generation 
 Third generation 
 Fourth generation 
 Beyond the fourth generation 
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First generation: 
1946 to 1955: Computers of this generation used Vacuum Tubes. The computes were built using 
stored program concept. Ex: ENIAC, EDSAC, IBM 701. 
Computers of this age typically used about ten thousand vacuum tubes. They were bulky in 
size had slow operating speed, short life time and limited programming facilities. 

 
Second generation: 
1955 to 1965: Computers of this generation used the germanium transistors as the active 
witching electronic device. Ex: IBM 7000, B5000, IBM 1401. Comparatively smaller in 
size About ten times faster operating speed as compared to first generation vacuum tube 
based computers. Consumed less power, had fairly good reliability. Availability of large 
memory was an added advantage. 

 
Third generation: 
1965 to 1975: The computers of this generation used the Integrated Circuits as the active 
electronic components. Ex: IBM system 360, PDP minicomputer etc. They were still smaller 
in size. They had powerful CPUs with the capacity of executing 1 million instructions per 
second (MIPS). Used to consume very less power consumption. 

 
Fourth generation: 
1976 to 1990: The computers of this generation used the LSI chips like microprocessor as 
their active electronic element. HCL horizen III, and WIPRO‟S Uniplus+ HCL‟s Busybee 
PC etc. 
They used high speed microprocessor as CPU. They were more user friendly and highly reliable 
systems. They had large storage capacity disk memories. 

 
Beyond Fourth Generation: 
1990 onwards: Specialized and dedicated VLSI chips are used to control specific functions 
of these computers. Modern Desktop PC‟s, Laptops or Notebook Computers. 
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Functional Unit 
 

A computer in its simplest form comprises five functional units namely input unit, output unit 
memory unit, arithmetic & logic unit and control unit. Figure 2 depicts the functional units of 
a computer system. 

 

Figure 2: Basic functional units of a computer 
 

Let us discuss about each of them in brief: 
 

1. Input Unit: Computer accepts encoded information through input unit. The 
standard input device is a keyboard. Whenever a key is pressed, keyboard 
controller sends the code to CPU/Memory. 

Examples include Mouse, Joystick, Tracker ball, Light pen, Digitizer, Scanner etc. 
 

2. Memory Unit: Memory unit stores the program instructions (Code), data 
and results of computations etc. Memory unit is classified as: 

 Primary /Main Memory 

 Secondary /Auxiliary Memory 
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Primary memory is a semiconductor memory that provides access at high speed. 
Run time program instructions and operands are stored in the main memory. Main 
memory is classified again as ROM and RAM. ROM holds system programs and 
firmware routines such as BIOS, POST, I/O Drivers that are essential to manage the 
hardware of a computer. RAM is termed as Read/Write memory or user memory that 
holds run time program instruction and data. While primary storage is essential, it is 
volatile in nature and expensive. Additional requirement of memory could be supplied 
as auxiliary memory at cheaper cost. Secondary memories are non volatile in nature. 

3. Arithmetic and logic unit: ALU consist of necessary logic circuits like adder, 
comparator etc., to perform operations of addition, multiplication, comparison of two 
numbers etc. 

4. Output Unit: Computer after computation returns the computed results, error 
messages, etc. via output unit. The standard output device is a video monitor, 
LCD/TFT monitor. Other output devices are printers, plotters etc. 

5. Control Unit: Control unit co-ordinates activities of all units by issuing control 
signals. Control signals issued by control unit govern the data transfers and then 
appropriate operations take place. Control unit interprets or decides the 
operation/action to be performed. 

The operations of a computer can be summarized as follows: 
 

1. A set of instructions called a program reside in the main memory of computer. 
 

2. The CPU fetches those instructions sequentially one-by-one from the main memory, 
decodes them and performs the specified operation on associated data operands in 
ALU. 

3. Processed data and results will be displayed on an output unit. 
 

4. All activities pertaining to processing and data movement inside the computer 
machine are governed by control unit. 
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OPERAND/s OPCODE 

 

Basic Operational Concepts 

An Instruction consists of two parts, an Operation code and operand/s as shown below: 
 

Let us see a typical instruction 
ADD LOCA, R0 

 

This instruction is an addition operation. The following are the steps to execute the 

instruction: Step 1: Fetch the instruction from main memory into the processor 

Step 2: Fetch the operand at location LOCA from main memory into the processor 

Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register 
R0 Step 4: Store the result (sum) in R0. 

The same instruction can be realized using two instructions as 
Load LOCA, 
R1 Add R1, 
R0 

The steps to execute the instructions can be enumerated as below: 
 

Step 1: Fetch the instruction from main memory into the 
processor Step 2: Fetch the operand at location LOCA from main 
memory into 

the processor Register R1 
Step 3: Add the content of Register R1 and the contents of register 
R0 Step 4: Store the result (sum) in R0. 
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Figure 3 below shows how the memory and the processor are connected. As shown in the 
diagram, in addition to the ALU and the control circuitry, the processor contains a number of 
registers used for several different purposes. The instruction register holds the instruction that 
is currently being executed. The program counter keeps track of the execution of the program. 
It contains the memory address of the next instruction to be fetched and executed. There are n 
general purpose registers R0 to Rn-1 which can be used by the programmers during writing 
programs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Connections between the processor and the memory 
 

The interaction between the processor and the memory and the direction of flow of 
information is as shown in the diagram below: 

 

Figure 4: Interaction between the memory and the ALU 
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BUS STRUCTURES 

Group of lines that serve as connecting path for several devices is called a bus (one bit per 
line). Individual parts must communicate over a communication line or path for exchanging 
data, address and control information as shown in the diagram below. Printer example – 
processor to printer. A common approach is to use the concept of buffer registers to hold the 
content during the transfer. 

 

 
 

SOFTWARE 

Figure 5: Single bus structure 

 

If a user wants to enter and run an application program, he/she needs a System Software. 
System Software is a collection of programs that are executed as needed to perform functions 
such as: 

 Receiving and interpreting user commands 
 Entering and editing application programs and storing then as files in secondary 

storage devices 
 Running standard application programs such as word processors, spread sheets, 

games etc… 
Operating system - is key system software component which helps the user to exploit the 
below underlying hardware with the programs. 

 
USER PROGRAM and OS ROUTINE INTERACTION 

 
Let‟s assume computer with 1 processor, 1 disk and 1 printer and application program is in 
machine code on disk. The various tasks are performed in a coordinated fashion, which is 
called multitasking. t0, t1 …t5 are the instances of time and the interaction during various 
instances as given below: 

 
t0: the OS loads the program from the disk to 
memory t1: program executes 
t2: program accesses disk 
t3: program executes some 
more t4: program accesses 
printer 
t5: program terminates 



 

 

 
 
 
 

 
Figure 6 :User program and OS routine sharing of the 
processor 

 

PERFORMANCE 
The most important measure of the performance of a computer is how quickly it can 
execute programs. The speed with which a computer executes program is affected by 
the design of its hardware. For best performance, it is necessary to design the compiles, 
the machine instruction set, and the hardware in a coordinated way. 
The total time required to execute the program is elapsed time is a measure of the 
performance of the entire computer system. It is affected by the speed of the processor, 
the disk and the printer. The time needed to execute a instruction is called the processor 
time. 
Just as the elapsed time for the execution of a program depends on all units in a 
computer system, the processor time depends on the hardware involved in the execution 
of individual machine instructions. This hardware comprises the processor and the 
memory which are usually connected by the bus. 
The pertinent parts of the fig. c is repeated in fig. d which includes the cache memory as 
part of the processor unit. 
Let us examine the flow of program instructions and data between the memory and the 
processor. At the start of execution, all program instructions and the required data are 
stored in the main memory. As the execution proceeds, instructions are fetched one by 
one over the bus into the processor, and a copy is placed in the cache later if the same 
instruction or data item is needed a second time, it is read directly from the cache. 
The processor and relatively small cache memory can be fabricated on a single IC chip. 
The internal speed of performing the basic steps of instruction processing on chip is 
very high and is considerably faster than the speed at which the instruction and data can 
be fetched from the main memory. A program will be executed faster if the movement 
of instructions and data between the main memory and the processor is minimized, 
which is achieved by using the cache. 



 

 

 
 
 

For example:- Suppose a number of instructions are executed repeatedly over a short 
period of time as happens in a program loop. If these instructions are available in the 
cache, they can be fetched quickly during the period of repeated use. The same applies 
to the data that are used repeatedly. 

 
Processor clock: 

 
Processor circuits are controlled by a timing signal called clock. The clock designer the 
regular time intervals called clock cycles. To execute a machine instruction the 
processor divides the action to be performed into a sequence of basic steps that each step 
can be completed in one clock cycle. The length P of one clock cycle is an important 
parameter that affects the processor performance. 
Processor used in today‟s personal computer and work station have a clock rates that 
range from a few hundred million to over a billion cycles per second. 

 
Basic performance equation: 

 
We now focus our attention on the processor time component of the total elapsed time. 
Let „T‟ be the processor time required to execute a program that has been prepared 
in some high-level language. The compiler generates a machine language object 
program that corresponds to the source program. Assume that complete execution of the 
program requires the execution of N machine cycle language instructions. The number 
N is the actual number of instruction execution and is not necessarily equal to the 
number of machine cycle instructions in the object program. Some instruction may be 
executed more than once, which in the case for instructions inside a program loop others 
may not be executed all, depending on the input data used. 
Suppose that the average number of basic steps needed to execute one machine 
cycle instruction is S, where each basic step is completed in one clock cycle. If clock 
rate is „R‟ cycles per second, the program execution time is given by 

 
T=N*S/R 

 
this is often referred to as the basic performance equation. 
We must emphasize that N, S & R are not independent parameters changing one may 
affect another. Introducing a new feature in the design of a processor will lead to 
improved performance only if the overall result is to reduce the value of T. 

 
Performance measurements: 

 
It is very important to be able to access the performance of a computer, comp designers 
use performance estimates to evaluate the effectiveness of new features. 
The previous argument suggests that the performance of a computer is given by the 
execution time T, for the program of interest. 
Inspite of the performance equation being so simple, the evaluation of „T‟ is highly 
complex. Moreover the parameters like the clock speed and various architectural 
features are not reliable indicators of the expected performance. 
Hence measurement of computer performance using bench mark programs is done to 
make comparisons possible, standardized programs must be used. 



 

 

 
 
 

The performance measure is the time taken by the computer to execute a given bench 
mark. Initially some attempts were made to create artificial programs that could be used 
as bench mark programs. But synthetic programs do not properly predict the 
performance obtained when real application programs are run. 
A non profit organization called SPEC- system performance evaluation corporation 
selects and publishes bench marks. 
The program selected range from game playing, compiler, and data base applications to 
numerically intensive programs in astrophysics and quantum chemistry. In each case, 
the program is compiled under test, and the running time on a real computer is 
measured. The same program is also compiled and run on one computer selected as 
reference. 
The „SPEC‟ rating is computed as follows. 

Running time on the reference computer 
SPEC rating =    

Running time on the computer under test 
If the SPEC rating = 50 

 
Multiprocessor & microprocessors: 

 
Large computers that contain a number of processor units are called multiprocessor 
system. These systems either execute a number of different application tasks in parallel 
or execute subtasks of a single large task in parallel. All processors usually have access 
to all memory locations in such system & hence they are called shared memory 
multiprocessor systems. The high performance of these systems comes with much 
increased complexity and cost. In contrast to multiprocessor systems, it is also possible 
to use an interconnected group of complete computers to achieve high total 
computational power. These computers normally have access to their own memory units 
when the tasks they are executing need to communicate data they do so by exchanging 
messages over a communication network. This properly distinguishes them from shared 
memory multiprocessors, leading to name message-passing multi computer. 

 
Data Representation: 

 
Information that a Computer is dealing with 

Data 
Numeric Data 

Numbers( Integer, real) 
Non-numeric Data 
Letters, Symbols 
Relationship between data elements 
Data Structures 
Linear Lists, Trees, Rings, etc 
Program(Instruction) 

Numeric Data Representation 
 

 Decimal Binary Octal Hexadecimal  



 

 

 
 
 
 
 
 

Fixed 
Point 

 
 
 
 
 
 
 
 
 
 
 
 
 

Representation: 
It‟s the representation for integers only where the decimal point is always fixed. i.e at 
the end of rightmost point. it can be again represented in two ways. 

1. Sign and Magnitude Representation 
In this system, he most significant (leftmost) bit in the word as a sign bit. If the sign bit 
is 0, the number is positive; if the sign bit is 1, the number is negative. 
The simplest form of representing sign bit is the sign magnitude representation. 

One of the draw back for sign magnitude number is addition and subtraction need to 
consider both sign of the numbers and their relative magnitude. 

Another drawback is there are two representation for 0(Zero) i.e +0 and -0. 

2. One’s Complement (1’s) Representation 
In this representation negative values are obtained by complementing each bit of the 
corresponding positive number. 
For example 1s complement of 0101 is 1010 . The process of forming the 1s 
complement of a given number is equivalent to subtracting that number from 2n -1 i.e 
from 1111 for 4 bit number. 

Two‟s Complement (2‟s) Representation Forming the 2s complement of a number is 
done by subtracting that number from 2n . So 2s complement of a number is obtained 
by adding 1 to 1s complement of that number. 

Ex: 2‟s complement of 0101 is 1010 +1 = 1011 
NB: In all systems, the leftmost bit is 0 for positive number and 1 for negative number. 

 
Floating-point representation 
Floating-point numbers are so called as the decimal or binary point floats over the base 

00 0000 00 0 
01 0001 01 1 
02 0010 02 2 
03 0011 03 3 
04 0100 04 4 
05 0101 05 5 
06 0110 06 6 
07 0111 07 7 
08 1000 10 8 
09 1001 11 9 
10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 

 



 

 

 
 
 

depending on the exponent value. 
It consists two components. 
• Exponent 
• Mantissa 
Example: Avogadro's number can be written as 6.02x1023 in base 10. And the mantissa 
and exponent are 6.02 and 1023 respctivly. But computer floating-point numbers are 
usually based on base two. So 6.02x1023 is approximately (1 and 63/64)x278 or 
1.111111 (base two) x 21001110 (base two) 
Error Detection Codes 
Parity System 
Hamming Distance 
CRC 
Check sum 

 
Register Transfer Language And Micro Operations: 

 
Register Transfer language: 

 Digital systems are composed of modules that are constructed from digital 
components, such as registers, decoders, arithmetic elements, and control logic 

 The modules are interconnected with common data and control paths to form a 
digital computer system 

 The operations executed on data stored in registers are called microoperations 
 A microoperation is an elementary operation performed on the information 

stored in one or more registers 
 Examples are shift, count, clear, and load 
 Some of the digital components from before are registers that implement 

microoperations 
 The internal hardware organization of a digital computer is best defined by 

specifying 
 

o The set of registers it contains and their functions 
o The sequence of microoperations performed on the binary information 

stored 
o The control that initiates the sequence of microoperations 

 Use symbols, rather than words, to specify the sequence of microoperations 
 The symbolic notation used is called a register transfer language 
 A programming language is a procedure for writing symbols to specify a given 

computational process 
 Define symbols for various types of microoperations and describe associated 

hardware that can implement the microoperations 
 

Register Transfer 
 

 Designate computer registers by capital letters to denote its function 
 The register that holds an address for the memory unit is called MAR 
 The program counter register is called PC 



 

 

 
 
 

 IR is the instruction register and R1 is a processor register 
 The individual flip-flops in an n-bit register are numbered in sequence from 0 to 

n-1 
 Refer to Figure 4.1 for the different representations of a register 

 Designate information transfer from one register to 
another by R2  R1 

 This statement implies that the hardware is available 
o The outputs of the source must have a path to the inputs of the 

destination 
o The destination register has a parallel load capability 

 If the transfer is to occur only under a predetermined control condition, 
designate it by 

If (P = 1) then (R2  R1) 
or, 

P: R2  R1, 
 
 

where P is a control function that can be either 0 or 1 
 

 Every statement written in register transfer notation implies the 
presence of the required hardware construction  



 

 

 

 It is assumed that all transfers occur during a clock edge transition 
 All microoperations written on a single line are to be executed at the 

same time T: R2  R1, R1 R2 
 



 

 

 

Bus and Memory Transfers 
 

 Rather than connecting wires between all registers, a common bus is 
used 

 A bus structure consists of a set of common lines, one for each bit of a 
register 

 Control signals determine which register is selected by the bus 
duringeach transfer 

 Multiplexers can be used to construct a common bus 
 Multiplexers select the source register whose binary information is 

then placed on the bus 
 The select lines are connected to the selection inputs of the 

multiplexers and choose the bits of one register 
 

  In general, a bys system will multiplex k registers of n bits each to 
produce an n- line common bus 

 This requires n multiplexers – one for each bit 
 The size of each multiplexer must be k x 1 
 The number of select lines required is log k 
 To transfer information from the bus to a register, the bus lines are 

connected to the inputs of all destination registers and the 
corresponding load control line must be activated 

 Rather than listing each step as 
BUS  C, R1  BUS, 

use R1  C, since the bus isimplied 
 

 Instead of using multiplexers, three-state gates can be used to 



 

 

 

construct the bus system 
 A three-state gate is a digital circuit that exhibits three states 
 Two of the states are signals equivalent to logic 1 and 0 
 The third state is a high-impedance state – this behaves like an open 

circuit, which means the output is disconnected and does not have a 
logic significance 

 

 The three-state buffer gate has a normal input and a control 
input which determines the output state 

 With control 1, the output equals the normal input 
 With control 0, the gate goes to a high-impedance state 
 This enables a large number of three-state gate outputs to be connected 

with wires to form a common bus line without endangering loading 
effects 

  Decoders are used to ensure that no more than one control input is 
active at any given time 

 This circuit can replace the multiplexer in Figure 4.3 
 To construct a common bus for four registers of n bits each using 

three-state buffers, we need n circuits with four buffers in each 
 Only one decoder is necessary to select between the four registers 
 Designate a memory word by the letter M 
 It is necessary to specify the address of M when writing 

memory transfer operations 



 

 

 

 Designate the address register by AR and the data register by DR 
 The read operation can be stated as: Read: DR  M[AR] 
 The write operation can 

be stated as: 
Write: M[AR]  R1 

 
Arithmetic Microoperations 

 
 There are four categories of the most common microoperations: 

o Register transfer: transfer binary information from one register 
to another 

o Arithmetic: perform arithmetic operations on numeric 
data stored in registers 

o Logic: perform bit manipulation operations on non-numeric 
data stored in registers 

o Shift: perform shift operations on data stored in registers 

 The basic arithmetic microoperations are addition, subtraction, 
increment, decrement, and shift 

 Example of addition: R3  R1+R2 
 Subtraction is most often implemented through complementation and 

addition 
 Example of subtraction: R3  R1 +R2 + 1 (strikethrough denotes 

bar on top – 1‟s complement of R2) 
 Adding 1 to the 1‟s complement produces the 2‟s complement 
 Adding the contents of R1 to the 2‟s complement of R2 is 

equivalent to subtracting 



 

 

 
 

 
 Multiply and divide are not included as microoperations 
 A microoperation is one that can be executed by one clock pulse 
 Multiply (divide) is implemented by a sequence of add and shift 

microoperations (subtract and shift) 
 

 To implement the add microoperation with hardware, we need the 
registers that hold the data and the digital component that performs 
the addition 

 A full-adder adds two bits and a previous carry 
 A binary adder is a digital circuit that generates the arithmetic sum of 

two binary numbers of any length 
 A binary added is constructed with full-adder circuits connected in 

cascade 
 An n-bit binary adder requires n full-adders 

 

 The subtraction A-B can be carried out by the following steps 
o Take the 1‟s complement of B (invert each bit) 



 

 

 

o Get the 2‟s complement by adding 1 
o Add the result to A 

 The addition and subtraction operations can be combined into one 
common circuit by including an XOR gate with each full-adder 

 

 The increment microoperation adds one to a number in a register 
 This can be implemented by using a binary counter – every time the 

count enable is active, the count is incremented by one 
 If the increment is to be performed independent of a particular 

register, then use half-adders connected in cascade 
 An n-bit binary incrementer requires n half-adders 

 

 Each of the arithmetic microoperations can be implemented in one 
composite arithmetic circuit 

 The basic component is the parallel adder 
 Multiplexers are used to choose between the different operations 
 The output of the binary adder is calculated from the 

following sum: D = A + Y + Cin 



 

 

 

 
Logic Microoperations 

 
 Logic operations specify binary operations for strings of bits stored 

in registers and treat each bit separately 
 Example: the XOR of R1 and R2 is symbolized by 

P: R1  R1⊕ R2 
 Example: R1 = 1010 and R2 = 1100 

1010 Content of R1 
1100 Content of R2 



 

 

 
0110 

 
Content of R1 after P = 1 

 

 Symbols used for logical microoperations: 
o OR:  
o AND:  

o XOR: ⊕ 
 The + sign has two different meanings: logical OR and summation 
 When + is in a microoperation, then summation 
 When + is in a control function, then OR 
 Example: 

P + Q: R1   R2 + R3, R4   R5   R6 
 There are 16 different logic operations that can be performed with 

two binary variables 
 

 The hardware implementation of logic microoperations requires that 
logic gates be inserted for each bit or pair of bits in the registers 



 

 

 

 All 16 microoperations can be derived from using four logic gates 

 
 Logic microoperations can be used to change bit values, delete a 

group of bits, or insert new bit values into a register 
 The selective-set operation sets to 1 the bits in A where there are 

corresponding 1‟s in B 
1010 A before 
1100 B 
(logic 
operand) 
1110 A 
after 

A  A  B 

 The selective-complement operation complements bits in A 
where there are corresponding 1‟s in B 

1010 A before 
1100 B 
(logic 
operand) 
0110 A 
after 

 
A  A⊕ B 

 The selective-clear operation clears to 0 the bits in A only 
where there are corresponding 1‟s in B 

1010 A before 
1100 B 
(logic 



 

 

 

operand) 
0010 A 
after         

A  A B 

 The mask operation is similar to the selective-clear operation, except 
that the bits of A are cleared only where there are corresponding 0‟s 
in B 

1010 A before 
1100 B 
(logic 
operand) 
1000 A 
after 

A  A  B 
 The insert operation inserts a new value into a group of bits 
 This is done by first masking the bits to be replaced and then Oring 

them with the bits to be inserted 
0110 1010 A before 
0000 1111 B (mask) 
0000 1010 A after masking 

0000 1010 A before 
1001 0000 B (insert) 
1001 1010 A after insertion 

 
 The clear operation compares the bits in A and B and produces an all 

0‟s result if the two number are equal 
1010 A 
1010 B 

0000 A  A⊕ B 

Shift Microoperations 
 

 Shift microoperations are used for serial transfer of data 
 They are also used in conjunction with arithmetic, logic, and 

other data- processing operations 
 There are three types of shifts: logical, circular, and arithmetic 
 A logical shift is one that transfers 0 through the serial input 
 The symbols shl and shr are for logical shift-left and shift-right by 

one position R1   shlR1 
 

 The circular shift (aka rotate) circulates the bits of the register 
around the two ends without loss of information 

 The symbols cil and cir are for circular shift left and right 



 

 

 

 
 The arithmetic shift shifts a signed binary number to the left or right 
 To the left is multiplying by 2, to the right is dividing by 2 
 Arithmetic shifts must leave the sign bit unchanged 
 A sign reversal occurs if the bit in Rn-1 changes in value after the shift 
 This happens if the multiplication causes an overflow 
 An overflow flip-flop Vs can be used to detect 

theoverflow Vs = Rn-1 ⊕Rn-2 

 A bi-directional shift unit with parallel load could be used to implement 
this 

 Two clock pulses are necessary with this configuration: one to load 
the value and another to shift 

 In a processor unit with many registers it is more efficient to 
implement the shift operation with a combinational circuit 

 The content of a register to be shifted is first placed onto a common 
bus and the output is connected to the combinational shifter, the shifted 
number is then loaded back into the register 

 This can be constructed with multiplexers 



 

 

 

 
Arithmetic Logic Shift Unit 

 
 The arithmetic logic unit (ALU) is a common operational unit 

connected to a number of storage registers 
 To perform a microoperation, the contents of specified registers are 

placed in the inputs of the ALU 
 The ALU performs an operation and the result is then transferred to a 

destination register 
 The ALU is a combinational circuit so that the entire register transfer 

operation from the source registers through the ALU and into the 
destination register can be performed during one clock pulse period 



 

 

 

 



 

 

 

 



 

 

 

                 UNIT II 
 

Basic Computer Organization and Design 
 

Instruction codes. Computer Registers Computer instructions, Timing and 
Control, Instruction cycle. Memory Reference Instructions, Input – Output and 
Interrupt, Complete Computer Description. 
Micro Programmed Control: Control memory, Address sequencing, micro 
program example, design of control unit, micro Programmed control 
----------------------------------------------------------------------------------- 
------------------------- 
Instruction Formats: 

A computer will usually have a variety of instruction code formats. It 

is the function of the control unit within the CPU to interpret each 

instruction code and provide the necessary control functions needed to 

process the instruction. 

The format of an instruction is usually depicted in a rectangular box 

symbolizing the bits of the instruction as they appear in memory words or in 

a control register. The bits of the instruction are divided into groups called 

fields. The most common fields found in instruction formats are: 

1 An operation code field that specifies the operation to be 
performed. 
2. An address field that designates a memory address or a processor 

registers. 

3. A mode field that specifies the way the operand or the effective 
address is determined. 

Other special fields are sometimes employed under certain 

circumstances, as for example a field that gives the number of shifts in a 

shift-type instruction. 

The operation code field of an instruction is a group of bits that define 

various processor operations, such as add, subtract, complement, and shift. 

The bits that define the mode field of an instruction code specify a variety 

of alternatives for choosing the operands from the given address. 

Operations specified by computer instructions are executed on some 

data stored in memory or processor registers, Operands residing in 

processor registers are specified with a register address. A register address 

is a binary number of k bits that defines one of 2k registers in the CPU. Thus 



 

 

a CPU with 16 processor registers R0 through R15 will have a register 

address field of four bits. The binary number 0101, for example, will 

designate register R5. 

 
Computers may have instructions of several different lengths 

containing varying number of addresses. The number of address fields in 

the instruction format of a computer depends on the internal organization of 

its registers. Most computers fall into one of three types of CPU 

organizations: 
1 Single accumulator organization. 

2 General register organization. 

3 Stack organization. 

All operations are performed with an implied accumulator register. 

The instruction format in this type of computer uses one address field. For 

example, the instruction that specifies an arithmetic addition is defined by 

an assembly language instruction as  ADD. 

Where X is the address of the operand. The ADD instruction in this 

case results in the operation AC ← AC + M[X]. AC is the accumulator 

register and M[X] symbolizes the memory word located at address X. 

An example of a general register type of organization was presented 

in Fig. 7.1. The instruction format in this type of computer needs three 

register address fields. Thus the instruction for an arithmetic addition may 

be written in an assembly language as 

 ADD R1, R2, R3 

To denote the operation R1 ← R2 + R3. The number of address fields 

in the instruction can be reduced from three to two if the destination register 

is the same as one of the source registers. Thus the instruction 

 ADD R1, R2 

Would denote the operation R1 ← R1 + R2. Only register addresses 

for R1 and R2 need be specified in this instruction. 

Computers with multiple processor registers use the move instruction 

with a mnemonic MOV to symbolize a transfer instruction. Thus the 

instruction 

  MOV R1, R2 

Denotes the transfer R1 ← R2 (or R2 ← R1, depending on the 



 

 

particular computer). Thus transfer-type instructions need two address fields 
 

to specify the source and the destination. 

General register-type computers employ two or three address fields in 

their instruction format. Each address field may specify a processor register 

or a memory word. An instruction symbolized by 

ADD R1, X 
Would specify the operation R1 ← R + M [X]. It has two address 

fields, one for register R1 and the other for the memory address X. 

The stack-organized CPU was presented in Fig. 8-4. Computers with 

stack organization would have PUSH and POP instructions which require 

an address field. Thus the instruction 

PUSH X 
Will push the word at address X to the top of the stack. The stack 

pointer is updated automatically. Operation-type instructions do not need an 

address field in stack-organized computers. This is because the operation is 

performed on the two items that are on top of the stack. The instruction 

ADD in a stack computer consists of an operation code only with no address 

field. This operation has the effect of popping the two top numbers from the 

stack, adding the numbers, and pushing the sum into the stack. There is no 

need to specify operands with an address field since all operands are 

implied to be in the stack. 

To illustrate the influence of the number of addresses on computer 

programs, we will evaluate the arithmetic statement X = (A + B) ∗ (C + D). 

Using zero, one, two, or three address instruction. We will use the 

symbols ADD, SUB, MUL, and DIV for the four arithmetic operations; 

MOV for the transfer-type operation; and LOAD and STORE for transfers 

to and from memory and AC register. We will assume that the operands are 

in memory addresses A, B, C, and D, and the result must be stored in 

memory at address X. 
 

Three-Address Instructions 
Computers with three-address instruction formats can use each 

address field to specify either a processor register or a memory operand. 

The program in assembly language that evaluates X = (A + B) ∗ (C + D) is 



 

 

shown below, together with comments that explain the register transfer 
 

operation of each instruction. 

ADD R1, A, B R1 ← 

M [A] + M [B] 

ADD R2, C, D R2 ← 

M [C] + M [D] 

MUL X, R1, R2 M [X] 

← R1 ∗R2 

It is assumed that the computer has two processor registers, R1 and R2. The 
symbol M [A] denotes the operand at memory address symbolized by A. 
The advantage of the three-address format is that it results in short programs 

when evaluating arithmetic expressions. The disadvantage is that the binary- 

coded instructions require too many bits to specify three addresses. An 

example of a commercial computer that uses three-address instructions is 

the Cyber 170. The instruction formats in the Cyber computer are restricted 

to either three register address fields or two register address fields and one 

memory address field. 

 
 
 

Two-Address Instructions 
Two address instructions are the most common in commercial computers. 

Here again each address field can specify either a processor register or a 

memory word. The program to evaluate X = (A + B) ∗ (C + D) is as 

follows: 
MOV R1, A R1 ← M [A] 

ADD R1, B R1 ← R1 + M [B] 

MOV R2, C R2 ← M [C] 

ADD R2, D R2 ← R2 + M [D] 

MUL R1, R2 R1 ← R1∗R2 

MOV X, R1 M [X] ← R1 

 
The MOV instruction moves or transfers the operands to and from 

memory and processor registers. The first symbol listed in an instruction is 

assumed to be both a source and the destination where the result of the 

operation is transferred. 



 

 

 

One-Address Instructions 
One-address instructions use an implied accumulator (AC) register for 

all data manipulation. For multiplication and division there is a need for a 

second register. However, here we will neglect the second and assume that 

the AC contains the result of tall operations. The program to evaluate X = 

(A + B) ∗ (C + D) is 

 
 
 

STORE T M [T] ← AC 

LOAD C AC ← M [C] 

ADD D AC ← AC + M [D] 

MUL T AC ← AC ∗ M [T] 

STORE X M [X] ← AC 

All operations are done between the AC register and a memory 

operand. T is the address of a temporary memory location required for 

storing the intermediate result. 

Zero-Address Instructions 
A stack-organized computer does not use an address field for the 

instructions ADD and MUL. The PUSH and POP instructions, however, 

need an address field to specify the operand that communicates with the 

stack. The following program shows how X = (A + B) ∗ (C + D) will be 

written for a stack organized computer. (TOS stands for top of stack) 
PUSH A TOS ← A 

PUSH B TOS ← B 

ADD 

PUSH 

 
 

C 

TOS ← (A + B) 

TOS ← C 

PUSH D TOS ← D 

ADD  TOS ← (C + D) 

MUL 

POP 

 
 

X 

TOS ← (C + D) ∗ (A + B) 

M [X] ← TOS 
 
 

To evaluate arithmetic expressions in a stack computer, it is necessary 

to convert the expression into reverse Polish notation. The name “zero- 

address” is given to this type of computer because of the absence of an 

LOAD A AC ← M [A] 
ADD B AC ← A [C] + M [B] 



 

 

 

address field in the computational instructions. 

Instruction Codes 
A set of instructions that specify the operations, operands, and the sequence by 
which processing has to occur. An instruction code is a group of bits that tells the 
computer to perform a specific operation part. 

 
Format of Instruction 
The format of an instruction is depicted in a rectangular box symbolizing the bits 
of an instruction. Basic fields of an instruction format are given below: 
1. An operation code field that specifies the operation to be performed. 
2. An address field that designates the memory address or register. 
3. A mode field that specifies the way the operand of effective address is 

determined. 
 

Computers may have instructions of different lengths containing varying number 
of addresses. The number of address field in the instruction format depends upon 
the internal organization of its registers. 

 
Addressing Modes 

To understand the various addressing modes to be presented in this section, 

it is imperative that we understand the basic operation cycle of the computer. 

The control unit of a computer is designed to go through an instruction cycle 

that is divided into three major phases: 

1. Fetch the instruction from memory 
2. Decode the instruction. 

3. Execute the instruction. 

There is one register in the computer called the program counter of PC that 

keeps track of the instructions in the program stored in memory. PC holds the 

address of the instruction to be executed next and is incremented each time an 

instruction is fetched from memory. The decoding done in step 2 determines 

the operation to be performed, the addressing mode of the instruction and the 

location of the operands. The computer then executes the instruction and 

returns to step 1 to fetch the next instruction in sequence. 

In some computers the addressing mode of the instruction is specified 

with a distinct binary code, just like the operation code is specified. Other 

computers use a single binary code that designates both the operation and 

the mode of the instruction. Instructions may be defined with a variety of 



 

 

 

addressing modes, and sometimes, two or more addressing modes are 

combined in one instruction. 

1. The operation code specified the operation to be performed. The 

mode field is sued to locate the operands needed for the operation. There 

may or may not be an address field in the instruction. If there is an address 

field, it may designate a memory address or a processor register. Moreover, 

as discussed in the preceding section, the instruction may have more than 

one address field, and each address field may be associated with its own 

particular addressing mode. 

Although most addressing modes modify the address field of the 

instruction, there are two modes that need no address field at all. These are 

the implied and immediate modes. 
1 Implied Mode: In this mode the operands are specified implicitly in the 

definition of the instruction. For example, the instruction “complement accumulator” is 

an implied-mode instruction because the operand in the accumulator register is implied 

in the definition of the instruction. In fact, all register reference instructions that sue an 

accumulator are implied-mode instructions. 

Op code Mode Address 

Figure 1: Instruction format with mode field 

Zero-address instructions in a stack-organized computer are implied- 

mode instructions since the operands are implied to be on top of the stack. 

2 Immediate Mode: In this mode the operand is specified in the instruction 

itself. Inother words, an immediate- mode instruction has an operand field rather than 

an address field. The operand field contains the actual operand to be used in 

conjunction with the operation specified in the instruction. Immediate-mode 

instructions are useful for initializing registers to a constant value. 

It was mentioned previously that the address field of an instruction 

may specify either a memory word or a processor register. When the 

address field specifies a processor register, the instruction is said to be in the 

register mode. 

3 Register Mode: In this mode the operands are in registers that reside within 

the CPU.The particular register is selected from a register field in the instruction. A k- 

bit field can specify any one of 2k registers. 

4 Register Indirect Mode: In this mode the instruction specifies a register in the 

CPUwhose contents give the address of the operand in memory. In other words, the 



 

 

 

selected register contains the address of the operand rather than the operand itself. 

Before using a register indirect mode instruction, the programmer must 

ensure that the memory address fo the operand is placed in the processor 

register with a previous instruction. A reference to the register is then 

equivalent to specifying a memory address. The advantage of a register 

indirect mode instruction is that the address field of the instruction sues 

fewer bits to select a register than would have been required to specify a 

memory address directly. 
5 Auto increment or Auto decrement Mode: This is similar to the register indirect 

modeexcept that the register is incremented or decremented after (or before) its value is 

used to access memory. When the address stored in the register refers to a table of data 

in memory, it is necessary to increment or decrement the register after every access to 

the table. This can be achieved by using the increment or decrement instruction. 

However, because it is such a common requirement, some computers incorporate a 

special mode that automatically increments or decrements the content of the register 

after data access. 

The address field of an instruction is used by the control unit in the 

CPU to obtain the operand from memory. Sometimes the value given in the 

address field is the address of the operand, but sometimes it is just an 

address from which the address of the operand is calculated. To differentiate 

among the various addressing modes it is necessary to distinguish between 

the address part of the instruction and the effective address used by the 

control when executing the instruction. The effective address is defined to 

be the memory address obtained from the computation dictated by the given 

addressing mode. The effective address is the address of the operand in a 

computational-type instruction. It is the address where control branches in 

response to a branch-type instruction. We have already defined two 

addressing modes in previous chapter. 

6 Direct Address Mode: In this mode the effective address is equal to the address part 

ofthe instruction. The operand resides in memory and its address is given directly by 

the address field of the instruction. In a branch-type instruction the address field 

specifies the actual branch address. 

7 Indirect Address Mode: In this mode the address field of the instruction gives 

theaddress where the effective address is stored in memory. Control fetches the 

instruction from memory and uses its address part to access memory again to read the 



 

 

 

effective address. 
 

8 Relative Address Mode: In this mode the content of the program counter is added to 

theaddress part of the instruction in order to obtain the effective address. The address 

part of the instruction is usually a signed number (in 2‟s complement representation) 

which can be either positive or negative. When this number is added to the content of 

the program counter, the result produces an effective address whose position in 

memory is relative to the address of the next instruction. To clarify with an example, 

assume that the program counter contains the number 825 and the address part of the 

instruction contains the number 24. The instruction at location 825 is read from 

memory during the fetch phase and the program counter is then incremented by one 

to 826 + 24 = 850. This is 24 memory locations forward from the address of the next 

instruction. Relative addressing is often used with branch-type instructions when the 

branch address is in the area surrounding the instruction word itself. It results in a 

shorter address field in the instruction format since the relative address can be 

specified with a smaller number of bits compared to the number of bits required to 

designate the entire memory address. 

9 Indexed Addressing Mode: In this mode the content of an index register is added 

to theaddress part of the instruction to obtain the effective address. The index 

register is a special CPU register that contains an index value. The address field of 

the instruction defines the beginning address of a data array in memory. Each 

operand in the array is stored in memory relative to the beginning address. The 

distance between the beginning address and the address of the operand is the index 

value stores in the index register. Any operand in the array can be accessed with 

the same instruction provided that the index register contains the correct index 

value. The index register can be incremented to facilitate access to consecutive 

operands. Note that if an index-type instruction does not include an address field in 

its format, the instructionconverts to the register indirect mode of operation. Some 

computers dedicate one CPU register to function solely as an index register. This 

register is involved implicitly when the index-mode instruction is used. In 

computers with many processor registers, any one of the CPU registers can contain 

the index number. In such a case the register must be specified explicitly in a 

register field within the instruction format. 

10 Base Register Addressing Mode: In this mode the content of a base register is 

added tothe address part of the instruction to obtain the effective address. This is 

similar to the indexed addressing mode except that the register is now called a base 

register instead of an index register. The difference between the two modes is in 

the way they are used rather than in the way that they are computed. An index 



 

 

 

register is assumed to hold an index number that is relative to the address part of 

the instruction. A base register is assumed to hold a base address and the address 

field of the instruction gives a displacement relative to this base address. The base 

register addressing mode is used in computers to facilitate the relocation of 

programs in memory. When programs and data are moved from one segment of 

memory to another, as required in multiprogramming systems, the address values 

of the base register requires updating to reflect the beginning of a new memory 

segment. 

 
 

Numerical Example 
 
 

 
 
 



 

 

 

Computer Registers 
 

 Data Register(DR) : hold the operand(Data) read from memory 

 Accumulator Register(AC) : general purpose processing register

 Instruction Register(IR) : hold the instruction read from memory

 Temporary Register(TR) : hold a temporary data during processing

 Address Register(AR) : hold a memory address, 12 bit width

 Program Counter(PC) :
»hold the address of the next instruction to be read from memory 
after the current instruction is executed 
»Instruction words are read and executed in sequence unless a branch 
instruction is encountered 
»A branch instruction calls for a transfer to a nonconsecutive 
instruction in the program 
»The address part of a branch instruction is transferred to PCto become 
the address of the next instruction 
Input Register(INPR) : receive an 8-bit character from an input device 
 Output Register(OUTR) : hold an 8-bit character for an 
output device
The following registers are used in Mano‟s example computer. 

 
 

Register Number Register Register  

symbol of bits name Function-----------------------  

DR 16 Data register Holds memory operands 
 

AR 12 Address register Holds address for memory  

AC 16 Accumulator Processor register  

IR 16 Instruction register Holds instruction code  

PC 12 Program counter Holds address of instruction  

TR 16 Temporary register Holds temporary data  

INPR 8 Input register Holds input character  

OUTR 8 Output register Holds output character  



 

 

 

Computer Instructions: 
The basic computer has 16 bit instruction register (IR) which can denote either 
memory reference or register reference or input-output instruction. 

1.  Memory Reference – These instructions refer to memory address as an 
operand. The other operand is always accumulator. Specifies 12 bit 
address, 3 bit opcode (other than 111) and 1 bit addressing mode for direct 
and indirect addressing. 
Example – 
IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching 
and decoding of instruction we find out that it is a memory reference 
instruction for ADD operation. 

 
2. Register Reference – These instructions perform operations on registers 

rather than memory addresses. The IR(14-12) is 111 (differentiates it from 
memory reference) and IR(15) is 0 (differentiates it from input/output 
instructions). The rest 12 bits specify register operation. 
Example – 
IR register contains = 0111001000000000, i.e. CMA after fetch and decode 
cycle we find out that it is a register reference instruction for complement 
accumulator. 

 
3. Input/Output – These instructions are for communication between 

computer and outside environment. The IR(14-12) is 111 (differentiates it 
from memory reference) and IR(15) is 1 (differentiates it from register 
reference instructions). The rest 12 bits specify I/O operation. 
Example – 
IR register contains = 1111100000000000, i.e. INP after fetch and decode 
cycle we find out that it is an input/output instruction for inputing 
character. Hence, INPUT character from peripheral device. 

 
Timing and Control 

All sequential circuits in the Basic Computer CPU are driven by a master clock, 
with the exception of the INPR register. At each clock pulse, the control unit 
sends control signals to control inputs of the bus, the registers, and the ALU. 
Control unit design and implementation can be done by two general methods: 

 A hardwired control unit is designed from scratch using traditional digital 
logic design techniques to produce a minimal, optimized circuit. In other 
words, the control unit is like an ASIC (application-specific integrated 
circuit). 

 A microprogrammed control unit is built from some sort of ROM. The 
desired control signals are simply stored in the ROM, and retrieved in 
sequence to drive the microoperations needed by a particular instruction. 

Hence, AC <- ~AC 

Hence, DR <- M[AR] 
AC <- AC+ DR, SC <- 0 



 

 

 

Instruction Cycle 
 

The CPU performs a sequence of microoperations for each instruction. The 
sequence for each instruction of the Basic Computer can be refined into 4 
abstract phases: 

 
1. Fetch instruction 
2. Decode 
3. Fetch operand 
4. Execute 

 
Program execution can be represented as a top-down design: 

 
1. Program execution 

a. Instruction 1 
i. Fetch instruction 

ii. Decode 
iii. Fetch operand 
iv. Execute 

b. Instruction 2 
i. Fetch instruction 

ii. Decode 
iii. Fetch operand 
iv. Execute 

c. Instruction 3 ... 
 

Program execution begins with: 
 

PC ← address of first instruction, SC ← 0 
 

After this, the SC is incremented at each clock cycle until an instruction is 
completed, and then it is cleared to begin the next instruction. This process 
repeats until a HLT instruction is executed, or until the power is shut off. 

 
Instruction Fetch and Decode 
The instruction fetch and decode phases are the same for all instructions, so the 
control functions and microoperations will be independent of the instruction 
code. 
Everything that happens in this phase is driven entirely by timing variables T0, 
T1 and T2. Hence, all control inputs in the CPU during fetch and decode are 
functions of these three variables alone. 

 
T0: AR ← PC 

 
T1: IR ← M[AR], PC ← PC + 1 

 
T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15) 

 
For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0. 



 

 

 

Micro Programmed Control: 
 

Control Memory 
 

 The control unit in a digital computer initiates sequences of microoperations 
 The complexity of the digital system is derived form the number of 

sequences that are performed 
 When the control signals are generated by hardware, it is hardwired 
 In a bus-oriented system, the control signals that specify 

microoperations are groups of bits that select the paths in 
multiplexers, decoders, and ALUs. 

 The control unit initiates a series of sequential steps of microoperations 
 The control variables can be represented by a string of 1‟s and 0‟s called a 

control word 
 A microprogrammed control unit is a control unit whose binary control 

variables are stored in memory 
 A sequence of microinstructions constitutes a microprogram 
 The control memory can be a read-only memory 
 Dynamic microprogramming permits a microprogram to be loaded 

and uses a writable control memory 
 A computer with a microprogrammed control unit will have two 

separate memories: a main memory and a control memory 
 The microprogram consists of microinstructions that specify various 

internal control signals for execution of register microoperations 
 These microinstructions generate the microoperations to: 

o fetch the instruction from main memory 
o evaluate the effective address 
o execute the operation 
o return control to the fetch phase for the next instruction 

 The control memory address register specifies the address of the 
microinstruction 

 The control data register holds the microinstruction read from memory 
 The microinstruction contains a control word that specifies one 

or more microoperations for the data processor 
 The location for the next microinstruction may, or may not be the 

next in sequence 
 Some bits of the present microinstruction control the generation of the 

address of the next microinstruction 
 The next address may also be a function of external input conditions 
 While the microoperations are being executed, the next address is 

computed in the next address generator circuit (sequencer) and then 
transferred into the CAR to read the next microinstructions 

 Typical functions of a sequencer are: 
o incrementing the CAR by one 
o loading into the CAR and address from control memory 
o transferring an external address 
o loading an initial address to start the control operations 

 A clock is applied to the CAR and the control word and next-address 



 

 

 

information are taken directly from the control memory 
 The address value is the input for the ROM and the control work is the 

output 
 No read signal is required for the ROM as in a RAM 

 
 The main advantage of the microprogrammed control is that once the 

hardware configuration is established, there should be no need for 
h/w or wiring changes 

 To establish a different control sequence, specify a 
different set of microinstructions for control memory 

 
Address Sequencing 

 
 Microinstructions are stored in control memory in groups, with each group 

specifying a routine 
 Each computer instruction has its own microprogram routine to 

generate the microoperations 
 The hardware that controls the address sequencing of the control memory 

must be capable of sequencing the microinstructions within a routine and 
be able to branch from one routine to another 

 Steps the control must undergo during the execution of a single 
computer instruction: 

o Load an initial address into the CAR when power is turned on in the 
computer. This address is usually the address of the first 
microinstruction that activates the instruction fetch routine – IR 
holds instruction 

o The control memory then goes through the routine to 
determine the effective address of the operand – AR holds 
operand address 

o The next step is to generate the microoperations that 
execute the instruction by considering the opcode and 
applying a mapping 

o After execution, control must return to the fetch routine by 
executing an unconditional branch 

 The microinstruction in control memory contains a set of bits to 
initiate microoperations in computer registers and other bits to 
specify the method by which the next address is obtained 

 Conditional branching is obtained by using part of the microinstruction to 
select a specific status bit in order to determine its condition 

 The status conditions are special bits in the system that provide parameter 
information such as the carry-out of an adder, the sign bit of a 
number, the mode bits of an instruction, and i/o status conditions 

 The status bits, together with the field in the microinstruction that 
specifies a branch address, control the branch logic 

 The branch logic tests the condition, if met then branches, otherwise, 
increments the CAR 

 If there are 8 status bit conditions, then 3 bits in the microinstruction are 
used to specify the condition and provide the selection variables for 
the multiplexer 



 

 

 

 For unconditional branching, fix the value of one status bit to be one 
load the branch address from control memory into the CAR 

 A special type of branch exists when a microinstruction specifies a 
branch to the first word in control memory where a microprogram 
routine is located 

 The status bits for this type of branch are the bits in the opcode 
 Assume an opcode of four bits and a control memory of 128 locations 
 The mapping process converts the 4-bit opcode to a 7-bit address for 

control memory 
 This provides for each computer instruction a microprogram routine 

with a capacity of four microinstructions 
 

 Subroutines are programs that are used by other routines to 
accomplish a particular task and can be called from any point 
within the main body of the microprogram 

 Frequently many microprograms contain identical section of code 
 Microinstructions can be saved by employing subroutines that use 

common sections of microcode 
 Microprograms that use subroutines must have a provisions for storing 

the return address during a subroutine call and restoring the address 
during a subroutine return 

 A subroutine register is used as the source and destination for the addresses 



 

 

 

UNIT III 
Computer Processing Unit Organization 
 

Introduction to CPU 
 

The operation or task that must perform by CPU is: 
• Fetch Instruction: The CPU reads an instruction from memory. 
• Interpret Instruction: The instruction is decoded to determine what action is 
required. 
• Fetch Data: The execution of an instruction may require reading data from memory 
or I/O module. 
• Process data: The execution of an instruction may require performing some arithmetic 
or logical operation on data. 
• Write data: The result of an execution may require writing data to memory or an I/O 
module. 

 
To do these tasks, it should be clear that the CPU needs to store some data temporarily. 
It must remember the location of the last instruction so that it can know where to get the 
next instruction. It needs to store instructions and data temporarily while an instruction 
is being executed. In other words, the CPU needs a small internal memory. These 
storage locations are generally referred as registers. 

 
The major components of the CPU are an arithmetic and logic unit (ALU) and a control 
unit (CU). The ALU does the actual computation or processing of data. The CU controls 
the movement of data and instruction into and out of the CPU and controls the operation 
of the ALU. 

 
The CPU is connected to the rest of the system through system bus. Through system 
bus, data or information gets transferred between the CPU and the other component of 
the system. The system bus may have three components: 

 
Data Bus: Data bus is used to transfer the data between main memory and CPU. 
Address Bus: Address bus is used to access a particular memory location by putting the 
address of the memory location. 
Control Bus: Control bus is used to provide the different control signal generated by 
CPU to different part of the system. 
As for example, memory read is a signal generated by CPU to indicate that a memory 
read operation has to be performed. Through control bus this signal is transferred to 
memory module to indicate the required operation. 

 

Figure 1: CPU with the system bus. 
There are three basic components of CPU: register bank, ALU and Control Unit. There 



 

 

 

are several data movements between these units and for that an internal CPU bus is 
used. Internal CPU bus is needed to transfer data between the various registers and the 
ALU. 

 
 
 
 

 

Figure 2 : Internal Structure of CPU 
 

Stack Organization: 
 

A useful feature that is included in the CPU of most computers is a stack or last in, first 
out (LIFO) list. A stack is a storage device that stores information in such a manner that 
the item stored last is the first item retrieved. The operation of a stack can be compared 
to a stack of trays. The last tray placed on top of the stack is the first to be taken off. 

 
The stack in digital computers is essentially a memory unit with an address register that 
can only( after an initial value is loaded in to it).The register that hold the address for the 
stack is called a stack pointer (SP) because its value always points at the top item in 
stack. Contrary to a stack of trays where the tray it self may be taken out or inserted, the 
physical registers of a stack are always available for reading or writing. 

 
The two operation of stack are the insertion and deletion of items. The operation of 
insertion is called PUSH because it can be thought of as the result of pushing a new item 
on top. The operation of deletion is called POP because it can be thought of as the result 
of removing one item so that the stack pops up. However, nothing is pushed or popped 
in a computer stack. These operations are simulated by incrementing or decrementing 
the stack pointer register. 



 

 

 

Register stack: 
 

A stack can be placed in a portion of a large memory or it can be organized as a 
collection of a finite number of memory words or registers. Figure X shows the 
organization of a 64-word register stack. The stack pointer register SP contains a binary 
number whose value is equal to the address of the word that is currently on top of the 
stack. Three items are placed in the stack: A, B, and C in the order. item C is on the top 
of the stack so that the content of sp is now 3. To remove the top item, the stack is 
popped by reading the memory word at address 3 and decrementing the content of SP. 
Item B is now on top of the stack since SP holds address 2. To insert a new item, the 
stack is pushed by incrementing SP and writing a word in the next higher location in the 
stack. Note that item C has read out but not physically removed. This does not matter 
because when the stack is pushed, a new item is written in its place. 

 
In a 64-word stack, the stack pointer contains 6 bits because 26 =64. since SP has only 

six bits, it cannot exceed a number grater than 63(111111 in binary). When 63 is 
incremented by 1, the result is 0 since 111111 + 1 =1000000 in binary, but SP can 
accommodate only the six least significant bits. Similarly, when 000000 is decremented 
by 1, the result is 111111. The one bit register Full is set to 1 when the stack is full, and 
the one-bit register EMTY is set to 1 when the stack is empty of items. DR is the data 
register that holds the binary data to be written in to or read out of the stack. 

 

Figure 3: Block Diagram Of A 64-Word Stack 
 

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP points to 
the word at address o and the stack is marked empty and not full. if the stack is not full , 
a new item is inserted with a push operation. the push operation is implemented with the 
following sequence of micro-operation. 

 
SP ←SP + 1 (Increment stack pointer) 
M(SP) ← DR (Write item on top of the stack) 
if (sp=0) then (Full ← 1) (Check if stack is full) 
Emty ← 0 ( Marked the stack not empty) 



 

 

 

The stac pointer is incremented so that it points to the address of the next-higher word. 
A memory write operation inserts the word from DR into the top of the stack. Note that 
SP holds the address of the top of the stack and that M(SP) denotes the memory word 
specified by the address presently available in SP, the first item stored in the stack is at 
address 1. The last item is stored at address 0, if SP reaches 0, the stack is full of item, 
so FULLL is set to 1. This condition is reached if the top item prior to the last push was 
in location 63 and after increment SP, the last item stored in location 0. Once an item is 
stored in location 0, there are no more empty register in the stack. If an item is written in 
the stack, Obviously the stack can not be empty, so EMTY is cleared to 0. 

 
DR← M[SP] Read item from the top of stack 

SP ← SP-1 Decrement stack Pointer 
if( SP=0) then (Emty ← 1) Check if stack is empty 
FULL ← 0 Mark the stack not full 

 
The top item is read from the stack into DR. The stack pointer is then decremented. if its 
value reaches zero, the stack is empty, so Emty is set to 1. This condition is reached if 
the item read was in location 1. once this item is read out , SP is decremented and 
reaches the value 0, which is the initial value of SP. Note that if a pop operation reads 
the item from location 0 and then SP is decremented, SP changes to 111111, which is 
equal to decimal 63. In this configuration, the word in address 0 receives the last item in 
the stack. Note also that an erroneous operation will result if the stack is pushed when 
FULL=1 or popped when EMTY =1. 

 
Memory Stack : 

 
A stack can exist as a stand-alone unit as in figure 4 or can be implemented in a 

random access memory attached to CPU. The implementation of a stack in the CPU is 
done by assigning a portion of memory to a stack operation and using a processor 
register as a stack pointer. Figure shows a portion of computer memory partitioned in to 
three segment program, data and stack. The program counter PC points at the address of 
the next instruction in the program. The address register AR points at an array of data. 
The stack pointer SP points at the top of the stack. The three register are connected to a 
common address bus, and either one can provide an address for memory. PC is used 
during the fetch phase to read an instruction. AR is used during the execute phase to 
read an operand. SP is used to push or POP items into or from the stack. 

 
As show in figure :4 the initial value of SP is 4001 and the stack grows with 

decreasing addresses. Thus the first item stored in the stack is at address 4000, the 
second item is stored at address 3999, and the last address hat can be used for the stack 
is 3000. No previous are available for stack limit checks. We assume that the items in 
the stack communicate with a data register DR. A new item is inserted with the push 
operation as follows. 

 
SP← SP-1 
M[SP] ← DR 
The stack pointer is decremented so that it points at the address of the next word. A 
Memory write operation insertion the word from DR into the top of the stack. A new 
item is deleted with a pop operation as follows. 
DR← M[SP] 
SP←SP + 1 
The top item is read from the stack in to DR. The stack pointer is then incremented to 
point at the next item in the stack. 
Most computer do not provide hardware to check for stack overflow (FULL) or 
underflow (Empty). The stack limit can be checked by using two prossor register : 



 

 

 

one to hold upper limit and other hold the lower limit. after the pop or push operation SP 
is compared with lower or upper limit register. 

 
 
 
 
 

 
 

Figure 4: computer memory with program, data and stack segments 
 

INSTRUCTION FORMATS: 
 

We know that a machine instruction has an opcode and zero or more operands. 
Encoding an instruction set can be done in a variety of ways. Architectures are 
differentiated from one another by the number of bits allowed per instruction (16, 32, 
and 64 are the most common), by the number of operands allowed per instruction, and 
by the types of instructions and data each can process. More specifically, instruction sets 
are differentiated by the following features: 
1. Operand storage in the CPU (data can be stored in a stack structure or in registers) 
2. Number of explicit operands per instruction (zero, one, two, and three being the most 
common) 
3. Operand location (instructions can be classified as register-to-register, register-to- 
memory or memory-to-memory, which simply refer to the combinations of operands 
allowed per instruction) 
4. Operations (including not only types of operations but also which instructions can 
access memory and which cannot) 
5. Type and size of operands (operands can be addresses, numbers, or even characters) 
Number of Addresses: 

 
One of the characteristics of the ISA(Industrial Standard Architecture) that shapes the 
architecture is the number of addresses used in an instruction. Most operations can be 
divided into binary or unary operations. Binary operations such as addition and 



 

 

 

multiplication require two input operands whereas the unary operations such as the 
logical NOT need only a single operand. Most operations produce a single result. There 
are exceptions, however. For example, the division operation produces two outputs: a 
quotient and a remainder. Since most operations are binary, we need a total of three 
addresses: two addresses to specify the two input operands and one to specify where the 
result should go. 

 
Three-Address Machines: 
In three-address machines, instructions carry all three addresses explicitly. The RISC 
processors use three addresses. Table X1 gives some sample instructions of a three- 
address machine. 

 
In these machines, the C statement 

A = B + C * D - E + F + A 
is converted to the following code: 

mult T,C,D ; T = C*D 
add T,T,B ; T = B + C*D 
sub T,T,E ; T = B + C*D - E 

add T,T,F ; T = B + C*D - E + F 
add   A,T,A ; A = B + C*D - E + F + A 

 
 

Table :T1 Sample three-address machine instructions 
 

Instruction 
 

Semantics 
add dest,src1,src2 Adds the two values at src1 and src2 and 

stores the result in dest 
M(dest) = [src1] + [src2] 

sub dest,src1,src2 Subtracts the second 
source operand at src2 from the first at 
src1 and stores the result in dest 
M(dest) = [src1] - [src2] 

mult dest,src1,src2 Multiplies the two values at src1 
and src2 and stores the result in dest 
M(dest) = [src1] * [src2] 

 
We use the notation that each variable represents a memory address that stores the value 
associated with that variable. This translation from symbol name to the memory address 
is done by using a symbol table. 

 
As you can see from this code, there is one instruction for each arithmetic operation. 
Also notice that all instructions, barring the first one, use an address twice. In the middle 
three instructions, it is the temporary T and in the last one, it is A. This is the motivation 
for using two addresses, as we show next. 

 
Two-Address Machines : 

 
In two-address machines, one address doubles as a source and destination. Usually, we 
use dest to indicate that the address is used for destination. But you should note that this 
address also supplies one of the source operands. The Pentium is an example processor 
that uses two addresses. Sample instructions of a two-address machine 

 
On these machines, the C statement 



 

 

 

A = B + C * D - E + F + A 
is converted to the following code: 

load T,C ; T = C 
mult T,D ; T = C*D 
add T,B ; T = B + C*D 
sub T,E ; T = B + C*D - E 
add T,F ; T = B + C*D - E + F 
add A,T ; A = B + C*D - E + F + A 
Table :T2 Sample Two-address machine instructions: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since we use only two addresses, we use a load instruction to first copy the C value into 
a temporary represented by T. If you look at these six instructions, you will notice that 
the operand T is common. If we make this our default, then we don‟t need even two 
addresses: we can get away with just one address. 

 

One-Address Machines : 
 

In the early machines, when memory was expensive and slow, a special set of registers 
was used to provide an input operand as well as to receive the result from the ALU. 
Because of this, these registers are called the accumulators. In most machines, there is 
just a single accumulator register. This kind of design, called accumulator machines, 
makes sense if memory is expensive. 

 
In accumulator machines, most operations are performed on the contents of the 

accumulator and the operand supplied by the instruction. Thus, instructions for these 
machines need to specify only the address of a single operand. There is no need to store 
the result in memory: this reduces the need for larger memory as well as speeds up the 
computation by reducing the number of memory accesses. A few sample accumulator 
machine instructions are shown in Table X3. 

In these machines, the C statement 
A = B + C * D - E + F + A 

is converted to the following code: 
 

load C ; load C into the accumulator 
mult D ; accumulator = C*D 
add B ; accumulator = C*D+B 
sub E ; accumulator = C*D+B-E 

add F ; accumulator = C*D+B-E+F 

 
Instruction 

 
Semantics 

load dest,src Copies the value at src to dest 
M(dest) = [src] 

add dest,src Adds the two values at src and dest and 
stores the result in dest 
M(dest) = [dest] + [src] 

sub dest,src Subtracts the second source operand at 
src from the first at dest and 
stores the result in dest 
M(dest) = [dest] - [src] 

mult dest,src Multiplies the two values at src and dest and 
stores the result in dest 
M(dest) = [dest] * [src] 



 

 

 

add A ; accumulator = C*D+B-E+F+A 
store A ; store the accumulator contents in A 

 
Table :T3 Sample ONE-address machine instructions 

Instruction Semantics 
load addr Copies the value at address addr into the 

  accumulator accumulator = [addr]  
store addr Stores the value in the accumulator at the 

  memory address addr   
  M(addr) = accumulator   

add addr Adds the contents of the accumulator and 
  value at address addr   
  accumulator = accumulator + [addr]  

sub addr Subtracts the value at memory address 
  addr from the contents of the accumulator 
  accumulator = accumulator - [addr]  

mult addr Multiplies the contents of the
  accumulator and value at address addr 
  accumulator = accumulator * [addr]  

Zero-Address Machines : 
In zero-address machines, locations of both operands are assumed to be at a 

default location. These machines use the stack as the source of the input operands 
and the result goes back into the stack. Stack is a LIFO (last-in-first-out) data 
structure that all processors support, whether or not they are zero-address 
machines. As the name implies, the last item placed on the stack is the first item to 
be taken out of the stack. A good analogy is the stack of trays you find in a 
cafeteria. 

All operations on this type of machine assume that the required input 
operands are the top two values on the stack. The result of the operation is placed 
on top of the stack. Table X4 gives some sample instructions for the stack 
machines. 

 
Table :T4 Sample Zero-address machine instructions 

Instruction Semantics 
push addr Places the value at address addr on top of the stack 

push([addr]) 
pop addr Stores the top value on the stack at memory address addr 

M(addr) = pop 
add Adds the top two values on the stack and pushes the result 

onto the stack 
push(pop + pop) 

sub Subtracts the second top value from the top value of the stack 
and pushes the result onto the stack 
push(pop – pop) 

mult Multiplies the top two values in the stack and pushes the result 
onto the stack 
push(pop * pop) 

 

Notice that the first two instructions are not zero-address instructions. These 



 

 

 

two are special instructions that use a single address and are used to move data 
between memory and stack. 

All other instructions use the zero-address format. Let‟s see how the stack 
machine translates the arithmetic expression we have seen in the previous 
subsections. In these machines, the C statement 

A = B + C * D - E + F + A 
is converted to the following code: 

push E ; <E> 
push C ; <C, E> 
push D ; <D, C, E> 
mult ; <C*D, E> 
push B ; <B, C*D, E> 
add ; <B+C*D, E> 
sub ; <B+C*D-E> 
push F ; <F, B+D*C-E> 
add ; <F+B+D*C-E> 
push A ; <A, F+B+D*C-E> 
add ; <A+F+B+D*C-E> 
pop A ; < > 

On the right, we show the state of the stack after executing each instruction. 
The top element of the stack is shown on the left. Notice that we pushed E early 
because we need to subtract it from (B+C*D). 

Stack machines are implemented by making the top portion of the stack 
internal to the processor. This is referred to as the stack depth. The rest of the stack 
is placed in memory. Thus, to access the top values that are within the stack depth, 
we do not have to access the memory. Obviously, we get better performance by 
increasing the stack depth. 

INSTRUCTION TYPES 
 

Most computer instructions operate on data; however, there are some that do 
not. Computer manufacturers regularly group instructions into the following 
categories: 
• Data movement 
• Arithmetic 
• Boolean 
• Bit manipulation (shift and rotate) 
• I/O 
• Transfer of control 
• Special purpose 

Data movement instructions are the most frequently used instructions. Data 
is moved from memory into registers, from registers to registers, and from registers 
to memory, and many machines provide different instructions depending on the 
source and destination. For example, there may be a MOVER instruction that always 
requires two register operands, whereas a MOVE instruction allows one register and 
one memory operand. 



 

 

 

Some architectures, such as RISC, limit the instructions that can move data 
to and from memory in an attempt to speed up execution. Many machines have 
ariations of load, store, and move instructions to handle data of different sizes. For 
example, there may be a LOADB instruction for dealing with bytes and a LOADW 
instruction for handling words. 

Arithmetic operations include those instructions that use integers and 
floating point numbers. Many instruction sets provide different arithmetic 
instructions for various data sizes. As with the data movement instructions, there are 
sometimes different instructions for providing various combinations of register and 
memory accesses in different addressing modes. 

Boolean logic instructions perform Boolean operations, much in the same 
way that arithmetic operations work. There are typically instructions for performing 
AND, NOT, and often OR and XOR operations. 

Bit manipulation instructions are used for setting and resetting individual bits 
(or sometimes groups of bits) within a given data word. These include both arithmetic 
and logical shift instructions and rotate instructions, both to the left and to the right. 
Logical shift instructions simply shift bits to either the left or the right by a specified 
amount, shifting in zeros from the opposite end. Arithmetic shift instructions, commonly 
used to multiply or divide by 2, do not shift the leftmost bit, because this represents the 
sign of the number. On a right arithmetic shift, the sign bit is replicated into the bit 
position to its right. On a left arithmetic shift, values are shifted left, zeros are shifted in, 
but the sign bit is never moved. Rotate instructions are simply shift instructions that shift 
in the bits that are shifted out. For example, on a rotate left 1 bit, the leftmost bit is 
shifted out and rotated around to become the rightmost bit. 

I/O instructions vary greatly from architecture to architecture. The basic 
schemes for handling I/O are programmed I/O, interrupt-driven I/O, and DMA 
devices. These are covered in more detail in Chapter 5. 

Control instructions include branches, skips, and procedure calls. Branching 
can be unconditional or conditional. Skip instructions are basically branch 
instructions with implied addresses. Because no operand is required, skip 
instructions often use bits of the address field to specify different situations (recall 
the Skipcond instruction used by MARIE). Procedure calls are special branch 
instructions that automatically save the return address. Different machines use 
different methods to save this address. Some store the address at a specific location 
in memory, others store it in a register, while still others push the return address on a 
stack. We have already seen that stacks can be used for other purposes. 

Special purpose instructions include those used for string processing, high 
level language support, protection, flag control, and cache management. Most 
architectures provide instructions for string processing, including string 
manipulation and searching. 

 
Addressing Modes 

We have examined the types of operands and operations that may be 
specified by machine instructions. Now we have to see how is the address of an 
operand specified, and how are the bits of an instruction organized to define the 
operand addresses and operation of that instruction. 



 

 

 

Addressing Modes: The most common addressing techniques are 
 

• Immediate 
• Direct 
• Indirect 
• Register 
• Register Indirect 
• Displacement 
• Stack 
All computer architectures provide more than one of these addressing modes. 

The question arises as to how the control unit can determine which addressing mode 
is being used in a particular instruction. Several approaches are used. Often, 
different opcodes will use different addressing modes. Also, one or more bits in the 
instruction format can be used as a mode field. The value of the mode field 
determines which addressing mode is to be used. 

What is the interpretation of effective address. In a system without virtual 
memory, the effective address will be either a main memory address or a register. In 
a virtual memory system, the effective address is a virtual address or a register. The 
actual mapping to a physical address is a function of the paging mechanism and is 
invisible to the programmer. 

To explain the addressing modes, we use the following notation: 
 

A = contents of an address field in the instruction that refers to a 
memory 

R = contents of an address field in the instruction that refers to a 
register 

EA = 
actual (effective) address of the location containing the 
referenced operand 

(X) = contents of location X 
 

Immediate Addressing: 
The simplest form of addressing is immediate addressing, in which the 

operand is actually present in the instruction: 
OPERAND =  A 

This mode can be used to define and use constants or set initial values of 
variables. The advantage of immediate addressing is that no memory reference other 
than the instruction fetch is required to obtain the operand. The disadvantage is that 
the size of the number is restricted to the size of the address field, which, in most 
instruction sets, is small compared with the world length. 



 

 

 
 

 
 

Figure 4.1: Immediate Addressing Mod 
The instruction format for Immediate Addressing Mode is shown in the Figure 4.1. 
Direct Addressing: 

A very simple form of addressing is direct addressing, in which the address 
field contains the effective address of the operand: 

EA = A 
It requires only one memory reference and no special calculation. 

 

 
Figure 4.2: Direct Addressing Mode 

 
Indirect Addressing: 

With direct addressing, the length of the address field is usually less than the 
word length, thus limiting the address range. One solution is to have the address 
field refer to the address of a word in memory, which in turn contains a full-length 
address of the operand. This is know as indirect addressing: 

EA = (A) 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: Indirect Addressing Mode 

Register Addressing: 
Register addressing is similar to direct addressing. The only difference is that 

the address field refers to a register rather than a main memory address: 
EA = R 



 

 

 
 

The advantages of register addressing are that only a small address field is 
needed in the instruction and no memory reference is required. The disadvantage of 
register addressing is that the address space is very limited. 

 

Figure 4.4: Register Addressing Mode. 
 

The exact register location of the operand in case of Register Addressing 
Mode is shown in the Figure 34.4. Here, 'R' indicates a register where the operand is 
present. 

 
 

Register Indirect Addressing: 
Register indirect addressing is similar to indirect addressing, except that the 

address field refers to a register instead of a memory location. It requires only one 
memory reference and no special calculation. 

EA = (R) 
Register indirect addressing uses one less memory reference than indirect 

addressing. Because, the first information is available in a register which is nothing 
but a memory address. From that memory location, we use to get the data or 
information. In general, register access is much more faster than the memory access. 

 



 

 

 

Diaplacement Addressing: 
A very powerful mode of addressing combines the capabilities of direct 

addressing and register indirect addressing, which is broadly categorized as 
displacement addressing: 

EA =  A + (R) 
Displacement addressing requires that the instruction have two address fields, at 

least one of which is explicit. The value contained in one address field (value = A) is 
used directly. The other address field, or an implicit reference based on opcode, refers to 
a register whose contents are added to A to produce the effective address. The general 
format of Displacement Addressing is shown in the Figure 4.6. 
Three of the most common use of displacement addressing are: 

• Relative addressing 
• Base-register addressing 
• Indexing 

 

Figure 4.6: Displacement Addressing 
 

Relative Addressing: 
For relative addressing, the implicitly referenced register is the program 

counter (PC). That is, the current instruction address is added to the address field to 
produce the EA. Thus, the effective address is a displacement relative to the address 
of the instruction. 
Base-Register Addressing: 

The reference register contains a memory address, and the address field 
contains a displacement from that address. The register reference may be explicit or 
implicit. In some implementation, a single segment/base register is employed and is 
used implicitly. In others, the programmer may choose a register to hold the base 
address of a segment, and the instruction must reference it explicitly. 
Indexing: 

The address field references a main memory address, and the reference 
register contains a positive displacement from that address. In this case also the 
register reference is sometimes explicit and sometimes implicit. 

Generally index register are used for iterative tasks, it is typical that there is a 
need to increment or decrement the index register after each reference to it. Because 
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this is such a common operation, some system will automatically do this as part of the same instruction cycle. 
This is known as auto-indexing. We may get two types of auto-indexing: -one is auto-incrementing and the other one is - 
auto-decrementing. 

If certain registers are devoted exclusively to indexing, then auto-indexing can be invoked implicitly and 
automatically. If general purpose register are used, the auto index operation may need to be signaled by a bit in the 
instruction. 

Auto-indexing using increment can be depicted as follows: 
 

EA = A + (R) 
R = (R) + 1 

Auto-indexing using decrement can be depicted as follows: 
 

EA = A + (R) 
R = (R) - 1 

In some machines, both indirect addressing and indexing are provided, and it is possible to employ both in the 
same instruction. There are two possibilities: The indexing is performed either before or after the indirection. 
If indexing is performed after the indirection, it is termed post indexing 

 
EA = (A) + (R) 

 
First, the contents of the address field are used to access a memory location containing an address. This address is then 

indexed by the register value. 

With pre indexing, the indexing is performed before the indirection: 
 

EA = ( A + (R) 
 

An address is calculated, the calculated address contains not the operand, but the address of the operand. 

Stack Addressing: 
A stack is a linear array or list of locations. It is sometimes referred to as a pushdown list or last-in- first-out 

queue. A stack is a reserved block of locations. Items are appended to the top of the stack so that, at any given time, the 
block is partially filled. Associated with the stack is a pointer whose value is the address of the top of the stack. The 
stack pointer is maintained in a register. Thus, references to stack locations in memory are in fact register indirect 
addresses. 

The stack mode of addressing is a form of implied addressing. The machine instructions need not include a 
memory reference but implicitly operate on the top of the stack. 
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COMPUTER ARITHMETIC 
 

Introduction: 
 

Data is manipulated by using the arithmetic instructions in digital computers. Data is 
manipulated to produce results necessary to give solution for the computation problems. 
The Addition, subtraction, multiplication and division are the four basic arithmetic 
operations. If we want then we can derive other operations by using these four operations. 

To execute arithmetic operations there is a separate section called arithmetic processing 
unit in central processing unit. The arithmetic instructions are performed generally on 
binary or decimal data. Fixed-point numbers are used to represent integers or fractions. 
We can have signed or unsigned negative numbers. Fixed-point addition is the simplest 
arithmetic operation. 

If we want to solve a problem then we use a sequence of well-defined steps. These steps 
are collectively called algorithm. To solve various problems we give algorithms. 

In order to solve the computational problems, arithmetic instructions are used in digital 
computers that manipulate data. These instructions perform arithmetic calculations. 

And these instructions perform a great activity in processing data in a digital computer. 
As we already stated that with the four basic arithmetic operations addition, subtraction, 
multiplication and division, it is possible to derive other arithmetic operations and solve 
scientific problems by means of numerical analysis methods. 

A processor has an arithmetic processor(as a sub part of it) that executes arithmetic 
operations. The data type, assumed to reside in processor, registers during the execution 
of an arithmetic instruction. Negative numbers may be in a signed magnitude or signed 
complement representation. There are three ways of representing negative fixed point - 
binary numbers signed magnitude, signed 1‟s complement or signed 2‟s complement. 
Most computers use the signed magnitude representation for the mantissa. 

Addition and Subtraction : 

Addition and Subtraction with Signed –Magnitude Data 
 

We designate the magnitude of the two numbers by A and B. Where the signed numbers 
are added or subtracted, we find that there are eight different conditions to consider, 
depending on the sign of the numbers and the operation performed. These conditions are 
listed in the first column of Table 4.1. The other columns in the table show the actual 
operation to be performed with the magnitude of the numbers. The last column is needed 
to present a negative zero. In other words, when two equal numbers are subtracted, the 
result should be +0 not -0. The algorithms for addition and subtraction are derived from 
the table and can be stated as follows (the words parentheses should be used for the 
subtraction algorithm). 

Addition and Subtraction of Signed-Magnitude Numbers 
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Computer Arithmetic Addition and Subtraction 

SIGNED MAGNITUDEADDITION AND SUBTRACTION 

Addition: A + B ; A: Augend; B: Addend 
Subtraction: A - B: A: Minuend; B: Subtrahend 

 
 
 
 
 
 
 
 
 
 

Hardware Implementation Bs B Register 

AVF Complementer  M(Mode Control) 

E Output  Parallel Adder Input 
Carry Carry 

S 

As A Register Load Sum 

 
 

Computer Arithmetic Addition and Subtraction 

 
Algorithm: 

 
The flowchart is shown in Figure 7.1. The two signs A, and B, are 
compared by an exclusive-OR gate. 

 
If the output of the gate is 0 the signs 
are identical; If it is 1, the signs are 
different. 

Hardware 

Overflow 

Algorithm 
Subtract Add 

 
 
Augend in AC 
Addend in B 

END END 

SIGNED 2’S COMPLEMENT ADDITION AND SUBTRACTION 

AC   AC +B 
V  overflow 

AC  AC + B’+ 1 
V  overflow 

Minuend in AC 
Subtrahend in B 

AC 

V Complementer and 
Parallel Adder 

B Register 

 
Operation 

Add 
Magnitude 

Subtract Magnitude 
When A>B When A<B When A=B 

(+A) + (+B) 
(+A) + (- B) 

+(A + B)  
+(A - B) 

 
- (B - A) 

 
+(A - B) 

(- A) + (+B)  - (A - B) +(B - A) +(A - B) 
(- A) + (- B) - (A + B)    

(+A) - (+B)  +(A - B) - (B - A) +(A - B) 
(+A) - (- B) +(A + B)    

(- A) - (+B) 
(- A) - (- B) 

- (A + B)  
- (A - B) +(B - A) +(A - B) 
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For an add operation, identical signs dictate that the magnitudes be 
added. For a subtract operation, different signs dictate that the 
magnitudes be added. 

The magnitudes are added with a microoperation EA A + B, where EA is a 
register that combines E and A. The carry in E after the addition constitutes an 
overflow if it is equal to 1. The value of E is transferred into the add-overflow 
flip-flop AVF. 

 

The two magnitudes are subtracted if the signs are different for an add 
operation or identical for a subtract operation. The magnitudes are subtracted 
by adding A to the 2's complemented B. No overflow can occur if the numbers 
are subtracted so AVF is cleared to 0. 

 

1 in E indicates that A >= B and the number in A is the correct result. If this 
numbs is zero, the sign A must be made positive to avoid a negative zero. 

 
0 in E indicates that A < B. For this case it is necessary to take the 2's 
complement of the value in A. The operation can be done with one 
microoperation A A' +1. 

However, we assume that the A register has circuits for microoperations 
complement and increment, so the 2's complement is obtained from these two 
microoperations. 

 
In other paths of the flowchart, the sign of the result is the same as the sign of 
A. so no change in A is required. However, when A < B, the sign of the result 
is the complement of the original sign of A. It is then necessary to complement 
A, to obtain the correct sign. 

 
The final result is found in register A and its sign in As. The value in AVF 
provides an overflow indication. The final value of E is immaterial. 

 
Figure 7.2 shows a block diagram of the hardware for implementing the 
addition and subtraction operations. 

It consists of registers A and B and sign flip-flops As 
and Bs. Subtraction is done by adding A to the 2's 
complement of B. 

 
The output carry is transferred to flip-flop E , where it can be checked to 
determine the relative magnitudes of two numbers. 

The add-overflow flip-flop AVF holds the overflow bit when A and B are added. 
 

The A register provides other microoperations that may be needed when we 
specify the sequence of steps in the algorithm. 
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Multiplication Algorithm: 
 

In the beginning, the multiplicand is in B and the multiplier in Q. Their 
corresponding signs are in Bs and Qs respectively. We compare the signs 
of both A and Q and set to corresponding sign of the product since a 
double-length product will be stored in registers A and Q. Registers A and 
E are cleared and the sequence counter SC is set to the number of bits of 
the multiplier. Since an operand must be stored with its sign, one bit of the 
word will be occupied by the sign and the magnitude will consist of n-1 
bits. 

 
 

Now, the low order bit of the multiplier in Qn is tested. If it is 1, the 
multiplicand (B) is added to present partial product (A), 0 otherwise. 
Register EAQ is then shifted once to the right to form the new partial 
product. The sequence counter is decremented by 1 and its new value 
checked. If it is not equal to zero, the process is repeated and a new partial 
product is formed. When SC = 0 we stops the process. 
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Booth’s algorithm : 

Booth algorithm gives a procedure for multiplying binary 
integers in signed- 2‟s complement representation. 

It operates on the fact that strings of 0‟s in the multiplier require no addition 
but just 
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shifting, and a string of 1‟s in the multiplier from bit weight 
2k to weight 2m can be treated as 2k+1 – 2m. 

 
For example, the binary number 001110 (+14) has a string 1‟s 
from 23 to 21 (k=3, m=1). The number can be represented as 2k+1 – 
2m. = 24 – 21 = 16 – 2 = 14. Therefore, the multiplication M X 14, 
where M is the multiplicand and 14 the multiplier, can be done 
as M X 24 – M X 21. 

Thus the product can be obtained by shifting the binary 
multiplicand M four times to the left and subtracting M shifted 
left once. 

 

 

 

As in all multiplication schemes, booth algorithm 
requires examination of the multiplier bits and shifting 
of partial product. 
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Prior to the shifting, the multiplicand may be added to the 
partial product, subtracted from the partial, or left unchanged 
according to the following rules: 

1. The multiplicand is subtracted from the partial product upon 
encountering the first least significant 1 in a string of 1‟s in 
the multiplier. 

 
2. The multiplicand is added to the partial product upon 

encountering the first 0 in a string of 0‟s in the multiplier. 
 

3. The partial product does not change when multiplier bit is 
identical to the previous multiplier bit. 

 

The algorithm works for positive or negative 
multipliers in 2‟s complement representation. 

 
This is because a negative multiplier ends with a string of 1‟s 
and the last operation will be a subtraction of the appropriate 
weight. 

The two bits of the multiplier in Qn and Qn+1 are inspected. 
 

If the two bits are equal to 10, it means that the first 1 in a string 
of 1 's has been encountered. This requires a subtraction of the 
multiplicand from the partial product in AC. 

 

If the two bits are equal to 01, it means that the first 0 in a string 
of 0's has been encountered. This requires the addition of the 
multiplicand to the partial product in AC. 

When the two bits are equal, the partial product does not change. 
 
 

Division Algorithms 

Division of two fixed-point binary numbers in signed magnitude 
representation is performed with paper and pencil by a process of 
successive compare, shift and subtract operations. Binary division is much 
simpler than decimal division because here the quotient digits are either 0 
or 1 and there is no need to estimate how many times the dividend or 
partial remainder fits into the divisor. The division process is described in 
Figure 
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The devisor is compared with the five most significant bits of the dividend. Since the 5-bit number is smaller 
than B, we again repeat the same process. Now the 6-bit number is greater than B, so we place a 1 for the 
quotient bit in the sixth position above the dividend. Now we shift the divisor once to the 

right and subtract it from the dividend. The difference is known 
as a partial remainder because the division could have stopped 
here to obtain a quotient of 1 and a remainder equal to the partial 
remainder. Comparing a partial remainder with the divisor 
continues the process. If the partial remainder is greater than or 
equal to the divisor, the quotient bit is equal to 
1. The divisor is then shifted right and subtracted from the partial 
remainder. If the partial remainder is smaller than the divisor, the 
quotient bit is 0 and no subtraction is needed. The divisor is 
shifted once to the right in any case. Obviously the result gives 
both a quotient and a remainder. 

 
Hardware Implementation for Signed-Magnitude Data 

 
In hardware implementation for signed-magnitude data in a 
digital computer, it is convenient to change the process slightly. 
Instead of shifting the divisor to the right, two dividends, or 
partial remainders, are shifted to the left, thus leaving the two 
numbers in the required relative position. Subtraction is achieved 
by adding A to the 2's complement of B. End carry gives the 
information about the relative magnitudes. 

The hardware required is identical to that of multiplication. 
Register EAQ is now shifted to the left with 0 inserted into Qn 
and the previous value of E is lost. The example is given in 
Figure 4.10 to clear the proposed division process. The divisor is 
stored in the B register and the double-length dividend is stored 
in registers A and Q. The dividend is shifted to the left and the 
divisor is subtracted by adding its 2's complement value. E 
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Floating-point Arithmetic operations : 

 
Hardware Implementation for Signed-Magnitude Data 

\Algorithm: 

 
 

Example of Binary Division with Digital Hardware 
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In many high-level programming languages we have a facility for 
specifying floating-point numbers. The most common way is by a real 
declaration statement. High level programming languages must have a 
provision for handling floating-point arithmetic operations. The operations 
are generally built in the internal hardware. If no hardware is available, the 
compiler must be designed with a package of floating-point software 
subroutine. Although the hardware method is more expensive, it is much 
more efficient than the software method. Therefore, floating- point 
hardware is included in most computers and is omitted only in very small 
ones. 

Basic Considerations : 
 

There are two part of a floating-point number in a computer - a mantissa m 
and an exponent e. The two parts represent a number generated from 
multiplying m times a radix r raised to the value of e. Thus 

m x re 

 
The mantissa may be a fraction or an integer. The position of the radix 
point and the value of the radix r are not included in the registers. For 
example, assume a fraction representation and a radix 
10. The decimal number 537.25 is represented in a register with m = 53725 
and e = 3 and is interpreted to represent the floating-point number 

 
.53725 x 103 

 
A floating-point number is said to be normalized if the most significant 
digit of the mantissa in nonzero. So the mantissa contains the maximum 
possible number of significant digits. We cannot normalize a zero because 
it does not have a nonzero digit. It is represented in floating-point by all 0‟s 
in the mantissa and exponent. 

Floating-point representation increases the range of numbers for a given 
register. Consider a computer with 48-bit words. Since one bit must be 
reserved for the sign, the range of fixed-point integer numbers will be + 
(247 – 1), which is approximately + 1014. The 48 bits can be used to 
represent a floating-point number with 36 bits for the mantissa and 12 bits 
for the exponent. Assuming fraction representation for the mantissa and 
taking the two sign bits into consideration, the range of numbers that can be 
represented is 

 
+ (1 – 2-35) x 22047 
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This number is derived from a fraction that contains 35 1‟s, an exponent of 
11 bits (excluding its sign), and because 211–1 = 2047. The largest number 
that can be accommodated is approximately 10615. The mantissa that can 
accommodated is 35 bits (excluding the sign) and if considered as an 
integer it can store a number as large as (235 –1). This is approximately 
equal to 1010, which is equivalent to a decimal number of 10 digits. 

Computers with shorter word lengths use two or more words to represent a 
floating-point number. An 8-bit microcomputer uses four words to 
represent one floating-point number. One word of 8 bits are reserved for 
the exponent and the 24 bits of the other three words are used in the 
mantissa. 

Arithmetic operations with floating-point numbers are more complicated 
than with fixed-point numbers. Their execution also takes longer time and 
requires more complex hardware. Adding or subtracting two numbers 
requires first an alignment of the radix point since the exponent parts must 
be made equal before adding or subtracting the mantissas. We do this 
alignment by shifting one mantissa while its exponent is adjusted until it 
becomes equal to the other exponent. Consider the sum of the following 
floating-point numbers: 

.5372400 x 102 

+ .1580000 x 10-1 

 
 

Floating-point multiplication and division need not do an alignment of the 
mantissas. Multiplying the two mantissas and adding the exponents can 
form the product. Dividing the mantissas and subtracting the exponents 
perform division. 

The operations done with the mantissas are the same as in fixed-point 
numbers, so the two can share the same registers and circuits. The 
operations performed with the exponents are compared and incremented 
(for aligning the mantissas), added and subtracted (for multiplication) and 
division), and decremented (to normalize the result). We can represent the 
exponent in any one of the three representations - signed-magnitude, signed 
2‟s complement or signed 1‟s complement. 

 
Biased exponents have the advantage that they contain only positive 
numbers. Now it becomes simpler to compare their relative magnitude 
without bothering about their signs. Another advantage is that the smallest 
possible biased exponent contains all zeros. The floating-point 
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Registersfor Floating Point Arithmetic 

BR 

E 

AC 

QR 

FLOATING POINT ARITHMETIC OPERATIONS 

Q Qs 

B Bs 

q 

Parallel Adder 
and Comparator Parallel Adder 

b 

F = m x re 
where m: Mantissa 

r: Radix 
e: Exponent 

representation of zero is then a zero mantissa and the smallest possible 
exponent. 
Register Configuration 

 
The register configuration for floating-point operations is shown in figure 
4.13. As a rule, the same registers and adder used for fixed-point arithmetic 
are used for processing the mantissas. The difference lies in the way the 
exponents are handled. 

The register organization for floating-point operations is shown in Fig. 
4.13. Three registers are there, BR, AC, and QR. Each register is 
subdivided into two parts. The mantissa part has the same uppercase letter 
symbols as in fixed-point representation. The exponent part may use 
corresponding lower-case letter symbol. 

Computer Arithmetic 14 Floating Point Arithmetic 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As A1 A  a 

 
 
 
 

Computer Organization Prof. H. Yoon 
 

Figure 4.13: Registers for Floating Point arithmetic operations 
 

Assuming that each floating-point number has a mantissa in signed- 
magnitude representation and a biased exponent. Thus the AC has a 
mantissa whose sign is in As, and a magnitude that is in A. The diagram 
shows the most significant bit of A, labeled by A1. The bit in his position 
must be a 1 to normalize the number. Note that the symbol AC represents 
the entire register, that is, the concatenation of As, A and a. 

In the similar way, register BR is subdivided into Bs, B, and b and QR into 
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Qs, Q and q. A parallel-adder adds the two mantissas and loads the sum 
into A and the carry into E. A separate parallel adder can be used for the 
exponents. The exponents do not have a district sign bit because they are 
biased but are represented as a biased positive quantity. It is assumed that 
the floating- point number are so large that the chance of an exponent 
overflow is very remote and so the exponent overflow will be neglected. 
The exponents are also connected to a magnitude comparator that provides 
three binary outputs to indicate their relative magnitude. 

The number in the mantissa will be taken as a fraction, so they binary point 
is assumed to reside to the left of the magnitude part. Integer representation 
for floating point causes certain scaling problems during multiplication and 
division. To avoid these problems, we adopt a fraction representation. 

The numbers in the registers should initially be normalized. After each 
arithmetic operation, the result will be normalized. Thus all floating-point 
operands are always normalized. 

Addition and Subtraction of Floating Point 
Numbers 

During addition or subtraction, the two floating-point operands are kept in 
AC and BR. The sum or difference is formed in the AC. The algorithm can 
be divided into four consecutive parts: 

 
1. Check for zeros. 

 
2. Align the mantissas. 

 
3. Add or subtract the mantissas 

 
4. Normalize the result 

 
A floating-point number cannot be normalized, if it is 0. If this number is 
used for computation, the result may also be zero. Instead of checking for 
zeros during the normalization process we check for zeros at the beginning 
and terminate the process if necessary. The alignment of the mantissas 
must be carried out prior to their operation. After the mantissas are added 
or subtracted, the result may be un-normalized. The normalization 
procedure ensures that the result is normalized before it is transferred to 
memory. 

 
 

If the magnitudes were subtracted, there may be zero or may have an underflow in 
the result. If the mantissa is equal to zero the entire floating-point number in the 
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AC is cleared to zero. Otherwise, the mantissa must have at least one bit that is 
equal to 1. The mantissa has an underflow if the most significant bit in position 
A1, is 0. In that case, the mantissa is shifted left and the exponent decremented. 
The bit in A1 is checked again and the process is repeated until A1 = 1. When A1 
= 1, the mantissa is normalized and the operation is completed. 
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Algorithm for Floating Point Addition and Subtraction 
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Multiplication: 

Computer Arithmetic 17 Floating Point Arithmetic 

FLOATING POINT DIVISION 
 BR  Divisor 

AC  Dividend 
 

  =0 BR 
 0 

  =0 AC 

0 

QR  0 

divide 
by 0 

 
  1     E      0   

A>=B   A<B 

A  A+B A  A+B 
shr A a 
 a+1 

 
a  a+b’+1 
a  a+bias 
q  a 

 
Divide Magnitude of mantissa as 
in fixed point numbers 

Qs  As + Bs  
Q  0 SC 
 n-1 

EA  A+B’+1 
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UNIT – 4 
 

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous data 
transfer Modes of Transfer, Priority Interrupt Direct memory Access, Input –Output Processor (IOP) 
Pipeline And Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction 
Pipeline, Dependencies, Vector Processing. 

 
 
 

Introduction: 
The I/O subsystem of a computer provides an efficient mode of communication between the central 
system and the outside environment. It handles all the input-output operations of the computer 
system. 

 
Peripheral Devices 
Input or output devices that are connected to computer are called peripheral devices. These devices 
are designed to read information into or out of the memory unit upon command from the CPU and are 
considered to be the part of computer system. These devices are also called peripherals. 

For example: Keyboards, display units and printers are common peripheral devices. 

There are three types of peripherals: 

 
1.  Input peripherals : Allows user input, from the outside world to the computer. Example: 

Keyboard, Mouse etc. 

2.  Output peripherals: Allows information output, from the computer to the outside world. 

Example: Printer, Monitor etc 

3.  Input-Output peripherals: Allows both input(from outised world to computer) as well as, 

output(from computer to the outside world). Example: Touch screen etc. 

 
Interfaces 

Interface is a shared boundary btween two separate components of the computer system which can be 
used to attach two or more components to the system for communication purposes. 

There are two types of interface: 
 

1. CPU Inteface 

2. I/O Interface 
 

Let's understand the I/O Interface in details, 



Computer Organization 

Computer Organization Page 77 

 

 

Input-Output Interface 
Peripherals connected to a computer need special communication links for interfacing with CPU. In 
computer system, there are special hardware components between the CPU and peripherals to control 
or manage the input-output transfers. These components are called input-output interface 
units because they provide communication links between processor bus and peripherals. They 
provide a method for transferring information between internal system and input-output devices. 

 
 

Asynchronous Data Transfer 
We know that, the internal operations in individual unit of digital system are synchronized by means 
of clock pulse, means clock pulse is given to all registers within a unit, and all data transfer among 
internal registers occur simultaneously during occurrence of clock pulse.Now, suppose any two units 
of digital system are designed independently such as CPU and I/O interface. 

 
And if the registers in the interface(I/O interface) share a common clock with CPU registers, then 
transfer between the two units is said to be synchronous.But in most cases, the internal timing in each 
unit is independent from each other in such a way that each uses its own private clock for its internal 
registers.In that case, the two units are said to be asynchronous to each other, and if data transfer 
occur between them this data transfer is said to be Asynchronous Data Transfer. 

 
But, the Asynchronous Data Transfer between two independent units requires that control signals be 
transmitted between the communicating units so that the time can be indicated at which they send 
data. 

 
This asynchronous way of data transfer can be achieved by two methods: 

1. One way is by means of strobe pulse which is supplied by one of the units to other 
unit.When transfer has to occur.This method is known as “Strobe Control”. 
2. Another method commonly used is to accompany each data item being transferred 
with a control signal that indicates the presence of data in the bus.The unit receiving the data 
item responds with another signal to acknowledge receipt of the data.This method of data 
transfer between two independent units is said to be “Handshaking”. 

 
The strobe pulse and handshaking method of asynchronous data transfer are not restricted to I/O 
transfer.In fact, they are used extensively on numerous occasion requiring transfer of data between 
two independent units.So, here we consider the transmitting unit as source and receiving unit as 
destination. 
As an example: The CPU, is the source during an output or write transfer and is the destination unit 
during input or read transfer. 

 
And thus, the sequence of control during an asynchronous transfer depends on whether the transfer is 
initiated by the source or by the destination. 

 
So, while discussing each way of data transfer asynchronously we see the sequence of control in both 
terms when it is initiated by source or when it is initiated by destination.In this way, each way of data 
transfer, can be further divided into parts, source initiated and destination initiated. 

 
We can also specify, asynchronous transfer between two independent units by means of a timing 
diagram that shows the timing relationship that exists between the control and the data buses. 
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Now, we will discuss each method of asynchronous data transfer in detail one by one. 
 

1. Strobe Control: 
 

The Strobe Control method of asynchronous data transfer employs a single control line to time 
each transfer .This control line is also known as strobe and it may be achieved either by source or 

destination, depending on which initiate transfer. 
 

Source initiated strobe for data transfer: 
 

The block diagram and timing diagram of strobe initiated by source unit is shown in figure below: 
 
 
 

 
 

In block diagram we see that strobe is initiated by source, and as shown in timing diagram, the 
source unit first places the data on the data bus.After a brief delay to ensure that the data settle to a 
steady value, the source activates a strobe pulse.The information on data bus and strobe control signal 
remain in the active state for a sufficient period of time to allow the destination unit to receive the 
data.Actually, the destination unit, uses a falling edge of strobe control to transfer the contents of 
data bus to one of its internal registers.The source removes the data from the data bus after it disables 
its strobe pulse.New valid data will be available only after the strobe is enabled again. 

 
Destination-initiated strobe for data transfer: 

 
The block diagram and timing diagram of strobe initiated by destination is shown in figure below: 
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In block diagram, we see that, the strobe initiated by destination, and as shown in timing diagram, 
the destination unit first activates the strobe pulse, informing the source to provide the data.The 
source unit responds by placing the requested binary information on the data bus.The data must be 
valid and remain in the bus long enough for the destination unit to accept it.The falling edge of strobe 
pulse can be used again to trigger a destination register.The destination unit then disables 
the strobe.And source removes the data from data bus after a per determine time interval. 

 
Now, actually in computer, in the first case means in strobe initiated by source - the strobe may be 

a memory-write control signal from the CPU to a memory unit.The source, CPU, places the word on 
the data bus and informs the memory unit, which is the destination, that this is a write operation. 

 
And in the second case i.e, in the strobe initiated by destination - the strobe may be a memory read 

control from the CPU to a memory unit.The destination, the CPU, initiates the read operation to 
inform the memory, which is a source unit, to place selected word into the data bus. 

 

2. Handshaking: 
 

The disadvantage of strobe method is that source unit that initiates the transfer has no way of 
knowing whether the destination has actually received the data that was placed in the 

bus.Similarly, a destination unit that initiates the transfer has no way of knowing whether the 
source unit, has actually placed data on the bus. 

 
This problem can be solved by handshaking method. 

 
Hand shaking method introduce a second control signal line that provides a replay to the unit that 

initiates the transfer. 
 

In it, one control line is in the same direction as the data flow in the bus from the source to 
destination.It is used by source unit to inform the destination unit whether there are valid data 

in the bus.The other control line is in the other direction from destination to the source.It is used 
by the  destination unit to inform the source whether it can accept data.And in it also, 
sequence of control depends on unit that initiate transfer.Means sequence of control depends 
whether transfer is initiated by source and destination.Sequence of control in both of them are 
described below: 
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Source initiated Handshaking: 
 

The source initiated transfer using handshaking lines is shown in figure below: 
 
 

 

In its block diagram, we se that two handshaking lines are "data valid", which is generated by the 
source unit, and "data accepted", generated by the destination unit. 

 
The timing diagram shows the timing relationship of exchange of signals between the two 

units.Means as shown in its timing diagram, the source initiates a transfer by placing data on the bus 
and enabling its data valid signal.The data accepted signal is then activated by destination unit after it 
accepts the data from the bus.The source unit then disable its data valid signal which invalidates the 
data on the bus.After this, the destination unit disables its data accepted signal and the system goes 
into initial state.The source unit does not send the next data item until after the destination unit shows 
its     readiness     to     accept     new     data     by     disabling     the     data     accepted     signal. 

 
This sequence of events described in its sequence diagram, which shows the above sequence in 
which the system is present, at any given time. 

 
Destination initiated handshaking: 

 

The destination initiated transfer using handshaking lines is shown in figure below: 



Computer Organization 

Computer Organization Page 81 

 

 

 

 
 

In its block diagram, we see that the two handshaking lines are "data valid", generated by the 
source unit, and "ready for data" generated by destination unit.Note that the name of signal data 
accepted generated by destination unit has been changed to ready for data to reflect its new meaning. 

 
In it, transfer is initiated by destination, so source unit does not place data on data bus until it 

receives ready for data signal from destination unit.After that, hand shaking process is some as that of 
source initiated. 

 
The sequence of event in it are shown in its sequence diagram and timing relationship between 

signals is shown in its timing diagram. 
 

Thus, here we can say that, sequence of events in both cases would be identical.If we consider 
ready for data signal as the complement of data accept.Means, the only difference between source 
and destination initiated transfer is in their choice of initial state. 

 

Modes of I/O Data Transfer 
Data transfer between the central unit and I/O devices can be handled in generally three types of 

modes which are given below: 
1. Programmed I/O 
2. Interrupt Initiated I/O 
3. Direct Memory Access 
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Programmed I/O 
Programmed I/O instructions are the result of I/O instructions written in computer program. Each 

data item transfer is initiated by the instruction in the program. 

Usually the program controls data transfer to and from CPU and peripheral. Transferring data under 
programmed I/O requires constant monitoring of the peripherals by the CPU. 

 
Interrupt Initiated I/O 

In the programmed I/O method the CPU stays in the program loop until the I/O unit indicates that 
it is ready for data transfer. This is time consuming process because it keeps the processor busy 
needlessly. 

This problem can be overcome by using interrupt initiated I/O. In this when the interface determines 
that the peripheral is ready for data transfer, it generates an interrupt. After receiving the interrupt signal, 
the CPU stops the task which it is processing and service the I/O transfer and then returns back to its 
previous processing task. 

 
Direct Memory Access 

Removing the CPU from the path and letting the peripheral device manage the memory buses 
directly would improve the speed of transfer. This technique is known as DMA. 

In this, the interface transfer data to and from the memory through memory bus. A DMA controller 
manages to transfer data between peripherals and memory unit. 

Many hardware systems use DMA such as disk drive controllers, graphic cards, network cards and sound 
cards etc. It is also used for intra chip data transfer in multicore processors. In DMA, CPU would initiate 
the transfer, do other operations while the transfer is in progress and receive an interrupt from the DMA 
controller when the transfer has been completed. 

 
Priority Interrupt 

A priority interrupt is a system which decides the priority at which various devices, which 
generates the interrupt signal at the same time, will be serviced by the CPU. The system has authority to 
decide which conditions are allowed to interrupt the CPU, while some other interrupt is being serviced. 
Generally, devices with high speed transfer such as magnetic disks are given high priority and slow 
devices such as keyboards are given low priority. 

When two or more devices interrupt the computer simultaneously, the computer services the device with 
the higher priority first. 
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Input/output Processor 
An input-output processor (IOP) is a processor with direct memory access capability. In this, the 
computer system is divided into a memory unit and number of processors. 

Each IOP controls and manage the input-output tasks. The IOP is similar to CPU except that it 
handles only the details of I/O processing. The IOP can fetch and execute its own instructions. These 
IOP instructions are designed to manage I/O transfers only. 

Block Diagram Of I/O Processor: 

Below is a block diagram of a computer along with various I/O Processors. The memory unit occupies the 
central position and can communicate with each processor. 

The CPU processes the data required for solving the computational tasks. The IOP provides a path for 
transfer of data between peripherals and memory. The CPU assigns the task of initiating the I/O program. 

The IOP operates independent from CPU and transfer data between peripherals and memory. 
 

 
 

The communication between the IOP and the devices is similar to the program control method of transfer. 
And the communication with the memory is similar to the direct memory access method. 

In large scale computers, each processor is independent of other processors and any processor can initiate 
the operation. 

The CPU can act as master and the IOP act as slave processor. The CPU assigns the task of initiating 
operations but it is the IOP, who executes the instructions, and not the CPU. CPU instructions provide 
operations to start an I/O transfer. The IOP asks for CPU through interrupt. 

Instructions that are read from memory by an IOP are also called commands to distinguish them from 
instructions that are read by CPU. Commands are prepared by programmers and are stored in memory. 
Command words make the program for IOP. CPU informs the IOP where to find the commands in 
memory. 
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Pipelining and vector processing 
 

Parallel processing 
Execution of Concurrent Events in the computing process to achieve faster Computational Speed 

Levels of Parallel Processing 

- Job or Program level 

- Task or Procedure level 

- Inter-Instruction level 

- Intra-Instruction level 

PARALLEL COMPUTERS 
Architectural Classification 

Flynn's classification 

» Based on the multiplicity of Instruction Streams and Data Streams 

» Instruction Stream 

Sequence of Instructions read from memory 

» Data Stream 

Operations performed on the data in the processor 
 
 
 

What is Pipelining? 
Pipelining is the process of accumulating instruction from the processor through a pipeline. It 

allows storing and executing instructions in an orderly process. It is also known as pipeline 
processing. 

Pipelining is a technique where multiple instructions are overlapped during execution. Pipeline is 
divided into stages and these stages are connected with one another to form a pipe like structure. 
Instructions enter from one end and exit from another end. 

Pipelining increases the overall instruction throughput. 

In pipeline system, each segment consists of an input register followed by a combinational circuit. 
The register is used to hold data and combinational circuit performs operations on it. The output of 
combinational circuit is applied to the input register of the next segment. 
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Pipeline system is like the modern day assembly line setup in factories. For example in a car 
manufacturing industry, huge assembly lines are setup and at each point, there are robotic arms to 
perform a certain task, and then the car moves on ahead to the next arm. 

 
Types of Pipeline 
It is divided into 2 categories: 

 

1. Arithmetic Pipeline 

2. Instruction Pipeline 
 
 

Arithmetic Pipeline 
Arithmetic pipelines are usually found in most of the computers. They are used for floating point 
operations, multiplication of fixed point numbers etc. For example: The input to the Floating Point Adder 
pipeline is: 

X = A*2^a 

Y = B*2^b 

Here A and B are mantissas (significant digit of floating point numbers), while a and b are exponents. 

The floating point addition and subtraction is done in 4 parts: 

 
1. Compare the exponents. 

2. Align the mantissas. 

3. Add or subtract mantissas 

4. Produce the result. 
 

Registers are used for storing the intermediate results between the above operations. 
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Instruction Pipeline 
In this a stream of instructions can be executed by overlapping fetch, decode and execute phases of an 
instruction cycle. This type of technique is used to increase the throughput of the computer system. 

An instruction pipeline reads instruction from the memory while previous instructions are being executed 
in other segments of the pipeline. Thus we can execute multiple instructions simultaneously. The pipeline 
will be more efficient if the instruction cycle is divided into segments of equal duration. 

Advantages of Pipelining 
1. The cycle time of the processor is reduced. 
2. It increases the throughput of the system 
3. It makes the system reliable. 

 

Disadvantages of Pipelining 
1. The design of pipelined processor is complex and costly to manufacture. 
2. The instruction latency is more. 

 
 

Vector(Array) Processing 
There is a class of computational problems that are beyond the capabilities of a conventional 

computer. These problems require vast number of computations on multiple data items, that will take a 
conventional computer(with scalar processor) days or even weeks to complete. 

Such complex instructions, which operates on multiple data at the same time, requires a better way of 
instruction execution, which was achieved by Vector processors. 

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also, simple 
instructions like ADD A to B, and store into C are not practically efficient. 

Addresses are used to point to the memory location where the data to be operated will be found, which 
leads to added overhead of data lookup. So until the data is found, the CPU would be sitting ideal, which 
is a big performance issue. 

Hence, the concept of Instruction Pipeline comes into picture, in which the instruction passes through 
several sub-units in turn. These sub-units perform various independent functions, for example: 
the first one decodes the instruction, the second sub-unit fetches the data and the thirdsub-unit performs 
the math itself. Therefore, while the data is fetched for one instruction, CPU does not sit idle, it rather 
works on decoding the next instruction set, ending up working like an assembly line. 

Vector processor, not only use Instruction pipeline, but it also pipelines the data, working on multiple data 
at the same time. 

A normal scalar processor instruction would be ADD A, B, which leads to addition of two operands, but 
what if we can instruct the processor to ADD a group of numbers(from 0 to n memory location) to another 
group of numbers(lets say, n to k memory location). This can be achieved by vector processors. 

In vector processor a single instruction, can ask for multiple data operations, which saves time, as 
instruction is decoded once, and then it keeps on operating on different data items. 
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Applications of Vector Processors 
Computer with vector processing capabilities are in demand in specialized applications. The following are 
some areas where vector processing is used: 

 

1. Petroleum exploration. 

2. Medical diagnosis. 

3. Data analysis. 

4. Weather forecasting. 

5. Aerodynamics and space flight simulations. 

6. Image processing. 

7. Artificial intelligence. 
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UNIT – 5 
Memory Organization: Memory Hierarchy, Main Memory –RAM And ROM Chips, Memory 
Address map, Auxiliary memory-magnetic Disks, Magnetic tapes, Associate Memory,-Hardware 
Organization, Match Logic, Cache Memory –Associative Mapping , Direct Mapping, Set associative 
mapping ,Writing in to cache and cache Initialization , Cache Coherence ,Virtual memory-Address 
Space and memory Space ,Address mapping using pages, Associative memory page table ,page 
Replacement . 

 

Memory Hierarchy 
 

 
The total memory capacity of a computer can be visualized by hierarchy of components. The 

memory hierarchy system consists of all storage devices contained in a computer system from the 
slow Auxiliary Memory to fast Main Memory and to smaller Cache memory. 

Auxillary memory access time is generally 1000 times that of the main memory, hence it is at the 
bottom of the hierarchy. 

The main memory occupies the central position because it is equipped to communicate directly with 
the CPU and with auxiliary memory devices through Input/output processor (I/O). 

When the program not residing in main memory is needed by the CPU, they are brought in from 
auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary 
memory to provide space in main memory for other programs that are currently in use. 

The cache memory is used to store program data which is currently being executed in the CPU. 
Approximate access time ratio between cache memory and main memory is about 1 to 7~10 
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Memory Access Methods 
Each memory type, is a collection of numerous memory locations. To access data from any memory, 
first it must be located and then the data is read from the memory location. Following are the methods 
to access information from memory locations: 

 

1.  Random Access: Main memories are random access memories, in which each memory 

location has a unique address. Using this unique address any memory location can be reached in 

the same amount of time in any order. 

2. Sequential Access: This methods allows memory access in a sequence or in order. 

3.  Direct Access: In this mode, information is stored in tracks, with each track having a separate 

read/write head. 

 
Main Memory 

The memory unit that communicates directly within the CPU, Auxillary memory and Cache 
memory, is called main memory. It is the central storage unit of the computer system. It is a large and 
fast memory used to store data during computer operations. Main memory is made up 
of RAM and ROM, with RAM integrated circuit chips holing the major share. 

 

 RAM: Random Access Memory 

o  DRAM: Dynamic RAM, is made of capacitors and transistors, and must be refreshed 

every 10~100 ms. It is slower and cheaper than SRAM. 

o  SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until 

powered off. 
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o  NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example: Flash 

memory. 

  ROM: Read Only Memory, is non-volatile and is more like a permanent storage for 

information. It also stores the bootstrap loader program, to load and start the operating system 

when computer is turned on. PROM(Programmable ROM), EPROM(Erasable PROM) 

and EEPROM(Electrically Erasable PROM) are some commonly used ROMs. 
 

Memory Address map: 
 

  The addressing of memory can establish by means of a table that specifies the memory 
address assigned to each chip. 

  The table, called a memory address map, is a pictorial representation of assigned address 
space for each chip in the system, shown in the table. 

  To demonstrate with a particular example, assume that a computer system needs 512 bytes of 
RAM and 512 bytes of ROM. 

 The RAM and ROM chips to be used specified in figures. 

 
 The component column specifies whether a RAM or a ROM chip used. 
 Moreover, The hexadecimal address column assigns a range of hexadecimal equivalent 

addresses for each chip. 
 The address bus lines listed in the third column. 
 Although there 16 lines in the address bus, the table shows only 10 lines because the other 6 

not used in this example and assumed to be zero. 
 The small x‟s under the address bus lines designate those lines that must connect to the 

address inputs in each chip. 
 Moreover, The RAM chips have 128 bytes and need seven address lines. The ROM chip has 

512 bytes and needs 9 address lines. 
 The x‟s always assigned to the low-order bus lines: lines 1 through 7 for the RAM. And lines 

1 through 9 for the ROM. 
 It is now necessary to distinguish between four RAM chips by assigning to each a different 

address. For this particular example, we choose bus lines 8 and 9 to represent four distinct 
binary combinations. 

 Also, The table clearly shows that the nine low-order bus lines constitute a memory space for 
RAM equal to 29 = 512 bytes. 

 The distinction between a RAM and ROM address done with another bus line. Here we 
choose line 10 for this purpose. 

 When line 10 0, the CPU selects a RAM, and when this line equal to 1, it selects the ROM. 
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Auxiliary Memory 
 

Devices that provide backup storage are called auxiliary memory. For example: Magnetic 
disks and tapes are commonly used auxiliary devices. Other devices used as auxiliary memory are 
magnetic drums, magnetic bubble memory and optical disks. 

It is not directly accessible to the CPU, and is accessed using the Input/Output channels. 

 
Cache Memory 

The data or contents of the main memory that are used again and again by CPU, are stored in 
the cache memory so that we can easily access that data in shorter time. 

Whenever the CPU needs to access memory, it first checks the cache memory. If the data is not found 
in cache memory then the CPU moves onto the main memory. It also transfers block of recent data 
into the cache and keeps on deleting the old data in cache to accomodate the new one. 

 
Hit Ratio 

The performance of cache memory is measured in terms of a quantity called hit ratio. When 
the CPU refers to memory and finds the word in cache it is said to produce a hit. If the word is not 
found in cache, it is in main memory then it counts as a miss. 

The ratio of the number of hits to the total CPU references to memory is called hit ratio. 

Hit Ratio = Hit/(Hit + Miss) 

 
Associative Memory 

It is also known as content addressable memory (CAM). It is a memory chip in which each 
bit position can be compared. In this the content is compared in each bit cell which allows very fast 
table lookup. Since the entire chip can be compared, contents are randomly stored without 
considering addressing scheme. These chips have less storage capacity than regular memory chips. 

 
Memory Mapping and Concept of Virtual Memory 

The transformation of data from main memory to cache memory is called mapping. There are 3 
main types of mapping: 

 

 Associative Mapping 

 Direct Mapping 

 Set Associative Mapping 
 
 

Associative Mapping 
The associative memory stores both address and data. The address value of 15 bits is 5 digit 

octal numbers and data is of 12 bits word in 4 digit octal number. A CPU address of 15 bits is placed 
in argument register and the associative memory is searched for matching address. 
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Direct Mapping 
The CPU address of 15 bits is divided into 2 fields. In this the 9 least significant bits constitute 

the index field and the remaining 6 bits constitute the tag field. The number of bits in index field is 
equal to the number of address bits required to access cache memory. 

 

 
Set Associative Mapping 
The disadvantage of direct mapping is that two words with same index address can't reside in cache 
memory at the same time. This problem can be overcome by set associative mapping. 

In this we can store two or more words of memory under the same index address. Each data word is 
stored together with its tag and this forms a set. 
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Replacement Algorithms 
Data is continuously replaced with new data in the cache memory using replacement algorithms. 

Following are the 2 replacement algorithms used: 
 

 FIFO - First in First out. Oldest item is replaced with the latest item. 

 LRU - Least Recently Used. Item which is least recently used by CPU is removed. 
 

Writing in to cache and cache Initialization: 

The benefit of write-through to main memory is that it simplifies the design of the computer 
system. With write-through, the main memory always has an up-to-date copy of the line. So when a 
read is done, main memory can always reply with the requested data. 

 
If write-back is used, sometimes the up-to-date data is in a processor cache, and sometimes it is in 
main memory. If the data is in a processor cache, then that processor must stop main memory from 
replying to the read request, because the main memory might have a stale copy of the data. This is 
more complicated than write-through. 

 
Also, write-through can simplify the cache coherency protocol because it doesn't need 
the Modifystate. The Modify state records that the cache must write back the cache line before it 
invalidates or evicts the line. In write-through a cache line can always be invalidated without writing 
back since memory already has an up-to-date copy of the line. 

 
Cache Coherence: 
In a shared memory multiprocessor with a separate cache memory for each processor , it is possible 
to have many copies of any one instruction operand : one copy in the main memory and one in 
each cache memory. When one copy of an operand is changed, the other copies of the operand must 
be changed also. Cache coherence is the discipline that ensures that changes in the values of shared 
operands are propagated throughout the system in a timely fashion. 

 
Virtual Memory 
Virtual memory is the separation of logical memory from physical memory. This separation provides 
large virtual memory for programmers when only small physical memory is available. 
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Virtual memory is used to give programmers the illusion that they have a very large memory even 
though the computer has a small main memory. It makes the task of programming easier because the 
programmer no longer needs to worry about the amount of physical memory available. 

 

 
Address mapping using pages: 

 
  The table implementation of the address mapping is simplified if the information in the 

address space. And the memory space is each divided into groups of fixed size. 
  Moreover, The physical memory is broken down into groups of equal size called blocks, 

which may range from 64 to 4096 words each. 
 The term page refers to groups of address space of the same size. 
 Also, Consider a computer with an address space of 8K and a memory space of 4K. 
  If we split each into groups of 1K words we obtain eight pages and four blocks as shown in 

the figure. 
  At any given time, up to four pages of address space may reside in main memory in any one 

of the four blocks. 
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Associative memory page table: 
The implementation of the page table is vital to the efficiency of the virtual memory 

technique, for each memory reference must also include a reference to the page table. The fastest 
solution is a set of dedicated registers to hold the page table but this method is impractical for large 
page tables because of the expense. But keeping the page table in main memory could cause 
intolerable delays because even only one memory access for the page table involves a slowdown of 
100 percent and large page tables can require more than one memory access. The solution is to 
augment the page table with special high-speed memory made up of associative registers or 
translation look aside buffers (TLBs) which are called ASSOCIATIVE MEMORY. 
Page replacement 

The advantage of virtual memory is that processes can be using more memory than exists in 
the machine; when memory is accessed that is not present (a page fault), it must be paged in 
(sometimes referred to as being "swapped in", although some people reserve "swapped in to refer to 
bringing in an entire address space). 

 
Swapping in pages is very expensive (it requires using the disk), so we'd like to avoid page faults as 
much as possible. The algorithm that we use to choose which pages to evict to make space for the 
new page can have a large impact on the number of page faults that occur. 
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