

1 Object-Oriented Analysis Design

K.C.E.SOCIETY’S
COLLEGE OF ENGINEERING AND I.T JALGAON-425001

DEPARTMENT OF COMPUTER ENGINEERING
Object-Oriented Analysis Design

__
OBJECT ORIENTED CONCEPTS

OBJECT
 Objects are the physical and conceptual things that exist in the universe.
 In programming terms, an object is a self-contained component that contains properties and

methods needed to make a certain type of data useful.
 Object is an instance of a class.

CLASS
 A class is a blueprint or template or set of instructions to build a specific type of object.
 In programming terms, a class is a way to bind, data and functions into a single unit.
 A class is an abstraction that describes important properties of object.

CLASS vs OBJECT
Parameters CLASS OBJECT
Definition Class is mechanism of binding data

members and associated methods
in a single unit.

Instance of class or variable of
class.

Existence It is logical existence It is physical existence

Memory Allocation
Memory space is not allocated,
when it is created.

Memory space is allocated, when it
is created.

Declaration/definition Definition is created once. It is created many time as you
require.

WHAT IS OBJECT ORIENTED?
 Software is organised as a collection of discrete objects that incorporate both data structure

and behaviour.
 It includes identity, classification, polymorphism and inheritance.

IDENTITY
 Identity means that data is organized into discrete distinguishable entities called

objects.
 Objects can be physical or conceptual.
 In real world object simply exist whereas in programming language each object has a

unique handle (unique identifier) by which it can be uniquely referenced.
 The handle can be implemented by address, array index or unique value of an attribute.

CLASSIFICATION

2 Object-Oriented Analysis Design

 It means that objects with same data structure (attribute) and behaviour (operations)
are grouped into a class.

 A class is an abstraction that describes important properties and ignores the rest.
POLYMORPHISM
 It means that the same operation (action or transformation that the object performs)

may behave differently on different classes.
 Specific implementation of an operation by a certain class is called a method.

INHERITANCE
 It is the sharing of attributes and operations among classes based on a hierarchical

relationship.
 Subclasses can be formed from broadly defined class.
 Each subclass incorporates or inherit all the properties of its super class and add its

own unique properties.

OBJECT ORIENTED METHODOLOGY
 Object Oriented Methodology is a methodology for object oriented

development and a graphical notation for representing objects oriented
concepts. This methodology is termed as OMT. The methodology has the
following stages:
1. Analysis
2. System design
3. Object design
4. Implementation

ANALYSIS
 An analysis model is a concise, precise abstraction of what the desired system

must do, not how it will be done. It should not contain any implementation
details. The objects in the model should be application domain concepts and
not the computer implementation concepts.

SYSTEM DESIGN
 The designer makes high level decisions about the overall architecture. In

system design, the target system is organized as various subsystems based on
both the analysis structure and the proposed architecture.

OBJECT DESIGN
 The designer builds a design model based on the analysis model but

containing implementation details. The focus of object design is the data
structures and algorithms needed to implement each cycle.

 The Objects identified in the system design phase are designed. Here the
implementation of these objects is decided in the form of data structures
required and the interrelationships between the objects.

3 Object-Oriented Analysis Design

IMPLEMENTATION
 The object classes and relationships developed during object design are

finally translated into a particular object oriented programming language,
database, or hardware implementation.

 During implementation, it is important to follow good software engineering
practice so that the system can remain the traceability, flexibility and
extensibility.

ADVANTAGES OF OBJECT ORIENTED METHODOLOGY
• The systems designed using OOM are closer to the real world as the real world functioning

of the system is directly mapped into the system designed using OOM. Because of this, it
becomes easier to produce and understand designs.

• The objects in the system are immune to requirement changes because of data hiding and
encapsulation features of object-orientation.

• OOM designs encourage more reusability. The classes once defined can easily be used by
other applications. This is achieved by defining classes and putting them into a library of
classes where all the classes are maintained for future use. Whenever a new class is needed
the programmer first looks into the library of classes and if it is available, it can be used as it
is or with some modification. This reduces the development cost & time and increases quality.

• Another way of reusability is provided by the inheritance feature of the object-orientation.
The concept of inheritance allows the programmer to use the existing classes in new
applications i.e. by making small additions to the existing classes can quickly create new
classes.

• As the programmer has to spend less time and effort so he can utilize saved time (due to the
reusability feature of the OOM) in concentrating on other aspects of the system.

OBJECT ORIENTED CONCEPTS
 ABSTRACTION

 Abstraction is "To represent the essential feature without representing the back ground
details."

 Abstraction makes to focus on what the object does instead of how it does it.
 Abstraction provides you a generalized view of your classes or object by providing

relevant information.
 Abstraction is the process of hiding the working style of an object, and showing the

information of an object in understandable manner.

 ENCAPSULATION
 Wrapping up data member and method together into a single unit (i.e. Class) is called

Encapsulation.
 Encapsulation is like enclosing in a capsule. That is enclosing the related operations

and data related to an object into that object.

4 Object-Oriented Analysis Design

 Encapsulation means hiding the internal details of an object, i.e. how an object does
something.

 Encapsulation prevents clients from seeing its inside view, where the behaviour of the
abstraction is implemented.

 Encapsulation is a technique used to protect the information in an object from the other
object.

 POLYMORPHISM
 Polymorphism means one name many forms. It is the property of an object to behave

differently in different instances.
 One function behaves different forms.
 In other words, "Many forms of a single object is called Polymorphism."

 INHERITANCE

 Inheritance is the capability of one class to acquire properties and characteristics from
another class.

 The class whose properties are inherited by other class is called the Parent or Base or
Super class. And, the class which inherits properties of other class is called Child or
Derived or Sub class.

 Inheritance makes the code reusable. When we inherit an existing class, all its methods
and fields become available in the new class, hence code is reused.

 All members of a class except Private, are inherited
 Purpose of Inheritance

1. Code Reusability
2. Method Overriding (Hence, Runtime Polymorphism.)
3. Use of Virtual Keyword

 The various types of Inheritance are listed below:

1. Single Inheritance
2. Multiple Inheritance
3. Hierarchical Inheritance
4. Multilevel Inheritance
5. Hybrid Inheritance (also known as Virtual Inheritance

5 Object-Oriented Analysis Design

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the simplest
form of Inheritance.

Multiple Inheritance
In this type of inheritance a single derived class may inherit from two or more than two base
classes.

Hierarchical Inheritance
In this type of inheritance, multiple derived classes inherits from a single base class.

Multilevel Inheritance
In this type of inheritance the derived class inherits from a class, which in turn inherits from
some other class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance
Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

6 Object-Oriented Analysis Design

DIFFERENCE BETWEEN ABSTRACTION AND ENCAPSULATION

Abstraction

Encapsulation

1. Abstraction solves the problem in the
design level.

1. Encapsulation solves the problem in the
implementation level.

2. Abstraction is used for hiding the unwanted
data and giving relevant data.

2. Encapsulation means hiding the code and
data into a single unit to protect the data from
outside world.

3. Abstraction lets you focus on what the
object does instead of how it does it

3. Encapsulation means hiding the internal
details or mechanics of how an object does
something.

4. Abstraction- Outer layout, used in terms of
design.
For Example:-
Outer Look of a Mobile Phone, like it has a
display screen and keypad buttons to dial a
number.

4. Encapsulation- Inner layout, used in terms
of implementation.
For Example:-
Inner Implementation detail of a Mobile
Phone, how keypad button and Display Screen
are connect with each other using circuits.

7 Object-Oriented Analysis Design

2. MODELING & OBJECT MODEL

MODELING
 A model is an abstraction of something for the purpose of understanding it before building

it.
 A model is also considered as a miniature form of a system.
 A model as a simplified representation of reality. A model provides a means for

conceptualization and communication of ideas in a precise and unambiguous form.
 The word model has two dimensions:

i) A view of a system ii) A stage of development
PURPOSE OF MODELING

 Testing a physical entity before building it.
 Provides easier communication with the customers / stakeholders.
 Can be used as a better visualization aid.
 Helps to reduce complexity during the actual implementation.

OMT METHODOLOGY
 OMT (Object Modelling Techniques) is an object-oriented software development

methodology given by James Rumbaugh et.al. This methodology describes a method for
analysis, design and implementation of a system using object-oriented technique.

 The OMT consists of three related but different viewpoints each capturing important
aspects of the system i.e. the static, dynamic and functional behaviours of the system.
These are described by object model, dynamic model and functional model of the OMT.

 The object model describes the static, structural and data aspects of a system.
 The dynamic model describes the temporal, behavioural and control aspects of a system.
 The functional model describes the transformational and functional aspects of a system.

MODELS IN OMT / OBJECT ORIENTED MODELS

Object model
 Describes basic structure of objects and their relationships.
 Contains object diagram.
 Object diagram is a graph whose nodes (vertices) are object classes (classes) and

whose arcs (edges) are relationships among classes.
Dynamic model
 Describes the aspects of a system that change over time.
 It specifies and implement control aspects of a system.
 Contains state diagram.
 State diagram is a graph whose nodes (vertices) are states and whose arcs (edges) are

transitions.
Functional model
 Describes the data value transformation within a system.
 It represents how the input data is converted into the required output data.
 Contains data flow diagrams (DFD).

8 Object-Oriented Analysis Design

 DFD is a graph whose nodes are process and whose arcs are data-flows.

 OBJECT vs DYNAMIC vs FUNCTIONAL MODELS

MODEL REPRESENTS DIAGRAMS GRAPH
REPRESENTATION
VERTICES EDGES

OBJECT Static or structural
features of a system.

Class diagram Class Relationship

DYNAMIC Aspects of a system
that
change over time.

State diagram State Transition

FUNCTIONAL Data transformation in
a system.

Data Flow
Diagram

Process Data / Dataflow

OBJECT MODELING
 The object model describes the structure of the objects in the system - their identity, their

relationships to other objects, their attributes, and their operations.
 The object model is represented graphically with an object diagram. The object diagram

contains classes interconnected by association lines.
 Each class represents a set of individual objects. The association lines establish relationships

among classes. Each association line represents a set of links from the object of one class to
the object of another class.

OBJECT AND CLASS
 A class describes a collection of similar objects. It is a template where certain basic

characteristics of a set of objects are defined.
 A class defines the basic attributes and the operations of the objects of that type. Defining a

class does not define any object, but it only creates a template. For objects to be actually
created, instances of the class are to be created as per the requirement of the case.

REPRESENTATION OF CLASS IN OMT
 In OMT, classes are represented by a rectangular box which may be divided into three parts

as shown in Figure below. The top part contains the name of the class, middle part contains
a list of attributes and bottom part contains a list of operations.

Class_Name

Attribute-name1:data-type1=default-val1
Attribute-name2:data-type2=default-val2

Operation-name1(arguments1):result-type1
Operation-name2(arguments2):result-type2

9 Object-Oriented Analysis Design

 Class name represents the name of the class. The class name should start with a character
followed by combination of letters or digits. The class name should begin with upper-case
letter. No white spaces are allowed in class names. Underscore (_) can be used.

 An attribute is a data value held by objects in a class. Each attribute has a value for each

object instance. This value should be a pure data value, not an object. Attributes are listed in
the second part of the class box. Attributes may or may not be shown; it depends on the level
of detail desired. Each attribute name may be followed by the optional details such as type
and default value. An object model should generally distinguish independent base attributes
from dependent derived attributes. A derived attribute is that which is derived from other
attributes. For example, age is a derived attribute, as it can be derived from date-of-birth and
current-date attributes.

 An operation is a function or transformation that may be applied to or by objects in a class.
Operations are listed in the third part of the class box. Operations may or may not be shown;
it depends on the level of detail desired. Each operation may be followed by optional details
such as argument list and result type. The name and type of each argument may be given. An
empty argument list in parentheses shows explicitly that there are no arguments.

 Examples for class representations

Class Book:

Book

title: string
author:string
publisher:string

open()
close()
read()

Class Student

Student

Name: string
Branch:string
Address:string
Mark2:integer
Mark1:integer

10 Object-Oriented Analysis Design

(Class_Name)

Object_name

(Book)
Object oriented
modelling & design

(Book)
Software
Engineering

(Book)
Mathematics

(Student)
Alwin

(Student)
Jishnu

(Student)
Anu

Calc_marks()
Calc_per()
View_details()

OBJECT
 An object is an instance of an object class.
 An object has the following four main characteristics:
 Unique identification
 Set of attributes
 Set of states
 Set of operations (behaviour)

 Every object has a unique name by which it is identified in the system.
 Rounded box represents an object instance in OMT.
 Object instance is a particular object from an object class.
 The box may/may not be divided in particular regions. Object instances can be used in

instance diagrams, which are useful for documenting test cases and discussing examples.

Examples of objects of class Book:

Examples of objects of class Student:

LINKS
 A link is a physical or conceptual connection between object instances. In OMT, link is

represented by a line labelled with its name as shown below.

11 Object-Oriented Analysis Design

(Person)
Deepu

reads (Book)
Software
Engineering

 Link-Name

 For example:

ASSOCIATIONS
 An association describes a group of links with common structure and common semantics

between two or more classes. Association is represented by a line labelled with the
association name as shown below.

Class Name

Association-Name

Class Name

******* ********

 Association names are optional. If the association is given a name, it should be written above

the line.
 In case of a binary association, the name reads in a particular direction (i.e. left to right), but

the binary association can be traversed in either direction.
 For example, a student studies a subject or a subject is studied by a student.
 All the links in an association connect objects from the same classes. Associations are

bidirectional in nature.

MULTIPLICITY
 It specifies how many instances of one class may relate to a single instance of an associated

class. Multiplicity constrains the number of related objects.
 There are special line terminators to indicate certain common multiplicity values.

 A solid ball is the symbol for "many", meaning zero, one or more.
 A hollow ball indicates "optional", meaning zero or one.

 The multiplicity is indicated with special symbols at the ends of association lines.

(Class Name)
Object Name

(Class Name)
Object Name

12 Object-Oriented Analysis Design

 In the most general case, multiplicity can be specified with a number or set of intervals. If no
multiplicity symbol is specified that means a one-to-one association.

 The rules of multiplicity are summarized below:
 Line without any ball indicates one-to-one association.
 Hollow ball indicates zero or one.
 Solid ball indicates zero, one or more.
 Numbers written on solid ball such as 1,2,6 indicates 1 or 2 or 6.
 Numbers written on solid ball such as 1+ indicates 1 or more, 2+ indicates 2 or more

TYPES OF ASSOCIATIONS

 An association can be unary, binary, ternary or n-ary.
 Unary association is between the same class as shown below

Association-name

Class-Name

 Example of unary association is Person teaches Person as shown below. Other examples of

unary association can be Person marries a Person, Person manages Person etc.

Teaches marries

 A binary association is an association between two classes as shown below

Class Name
Association-Name

Class Name

******* ********

 Example of a binary association is “Country has capital city”. One country has only one

capital city. So multiplicity of this association is one-to-one as shown below.

Person

Person

13 Object-Oriented Analysis Design

Country Has-capital City

********* *********

Another example of a binary association is “Student learns subject”. One student can learn many subjects or
one subject can be learnt by many students. So multiplicity of this association is many-to-many as shown
below.

Student learns Subject

********* *********

 Another example of binary association is “Person possesses a Passport”. Either a person can

have one passport or no passport but one passport can be with one person. So multiplicity of
this association is one-to-optional as shown below.

Person possesses Passport

********* *********

 Another example of binary association is “Company employs Person”. One company can

employ zero, one or more persons but one person can be employed in one company only
(assume). So multiplicity of this association is one-to-many as shown below.

Company employs Person

********* *********

 Ternary association is an association among three classes. On the same line, n-ary

association is an association among n classes.

 The OMT symbol for ternary and n-ary associations is a diamond with lines connecting to
related classes as shown below. A name for the association is optional and is written next to
the diamond. An n-ary associations cannot be subdivided into binary associations without
losing information.

14 Object-Oriented Analysis Design

Class-Name

Class-Name

Class-Name

Language

Project Programmer

Association Name

Attribute Name 1
Attribute Name 2

Class Name

Class Name

Example of a ternary association. Programmers develop Projects in (programming) Languages. One
programmer can be engaged in zero, one or more projects and can know zero, one or languages. Similarly,
one project can be developed by one or more programmers and in one or more languages. So this association
along with its multiplicity is shown below.

ADVANCED OBJECT MODELLING CONCEPTS

LINK ATTRIBUTES

 Sometimes, an attribute(s) cannot be associated with either of the two classes associated
by the association. In such cases, the attribute(s) is associated with the association and is
called as link attribute. It is a property of the links in an association.

 The OMT notation for a link attribute is a box attached to the association by a loop as
shown below.

15 Object-Oriented Analysis Design

Accessible by

User

File

AccessedBy

access-permission

User

File

Class Name

Class Name

Class Name

 For example: A File is accessed by a User. So, the classes File and User are related
by association, the association named “AccessedBy”. Many users can access one file
and one user can access many files. So, multiplicity of the association is many-to-
many. Now, the attribute “access-permission” cannot be associated with either File
class or with User class. This attribute can be associated with the link as shown below.
Hence, access-permission is link attribute.

 It is also possible to model an association as a class such class is called as link class

as shown in below figure. Each link becomes one instance of the class. The notation
for this kind of association is the same as for a link attribute and has a name and
(optional) operations added to it.

 Now, consider the example shown in below figure, where whole class is associated
with the link. In this example, the class Authorization is a link class. It has one
attribute “access-permission” and two methods grantPermission() and
changePermission().

Authorization

access-permission

16 Object-Oriented Analysis Design

grantPermission()
changePermsission()

ROLE NAMES
 A role is one end of an association. A binary association can have two roles, each of

which may have a role name. A role name is a name that uniquely identifies one end
of an association.

 Roles provide a way of viewing a binary association as a traversal from one object to
a set of associated objects. Each role on a binary association identifies an object or
set of objects associated with an object at the other end.

ClassName

Role Name Role Name ClassName

Association Name

 The use of role names is optional, but is often easier and less confusing to assign role
names instead of, or in addition to, association names. Role names are necessary for
associations between two objects of the same class. They are also useful to distinguish
between two associations between the same pair of classes.

 Follow these two guidelines for role names:

i) All role names on the far end of associations attached to a class must be unique.

ii) No role name should be the same as an attribute name of the source class. It is
also possible to use role names for n-ary associations.

 The role name is a derived attribute whose value is a set of related objects. Use of role
names provides a way of traversing associations from an object at one end, without
explicitly mentioning the association.

 For example, consider the association ‘a person works for a company’, in this employee
and employer are role names for the classes Person and Company respectively as
shown in figure.

Person
works for Company

employee employer

ORDERING

 Usually the objects on the "many" side of an association have no explicit order, and
can be regarded as a set. Sometimes the objects on the many side of an association
have order. Writing {ordered} next to the multiplicity dot as shown in figure
below,indicates an ordered set of objects of an association.

17 Object-Oriented Analysis Design

{Ordered}

ClassName ClassName
association name

 Consider the example of association between Window class and Screen class. A
screen can contain a number of windows. Windows are explicitly ordered. Only
topmost window is visible on the screen at any time. Figure 2.8 shows this example.

{ordered}

 Window

Screen Visible-on

QUALIFICATION
 A qualifier is an association attribute. A qualified association relates two object

classes and a qualifier. The qualifier is a special attribute that reduces the effective
multiplicity of an association. One-to-many and many-to-many associations may be
qualified.

 Qualifier is represented as shown below:

Class Name

 Class Name

Qualifier

 The qualifier is drawn as a small box on the end of the association line near the class

it qualifies. The qualifier rectangle is part of the association, not of class. The qualifier
distinguishes among the set of objects at the "many" end of an association. A qualified
association can also be considered a form of ternary association. The advantage of
the qualification is that it improves semantic accuracy and increases the visibility of
navigation paths.

 For example, a person object may be associated to a Bank object as shown in figure
below. An attribute of this association is the accoutNo. The accountNo is the qualifier of
this association.

18 Object-Oriented Analysis Design

Bank

Person

accountNo

19 Object-Oriented Analysis Design

Class Name

Class Name

Players Team

Program

Compound
statement

Block

AGGREGATION
 Aggregation is another relationship between classes. It is a tightly coupled form of

association with some extra semantics. It is the “part-whole” or “a-part-of” relationship in
which objects representing the component of something are associated with an object
representing the entire assembly.

 Aggregations are drawn like associations, except a small hollow diamond indicating the
assembly end of the relationship as shown in figure below. The class opposite to the
diamond side is part of the class on the diamond side.

 For example, a team is aggregation of players. This can be modelled as shown below

 Aggregation can be fixed, variable or recursive.
• In a fixed aggregation number and subtypes are fixed i.e. predefined.
• In a variable aggregation number of parts may vary but number of levels is finite.

• A recursive aggregate contains, directly or indirectly, an instance of the same

aggregate. The number of levels is unlimited. For example, as shown in figure

below, a computer program is an aggregation of blocks, with optionally recursive

compound statements. The recursion terminates with simple statement. Blocks can

be nested to arbitrary depth.

Simple
statement

20 Object-Oriented Analysis Design

 One more example of aggregation is shown below. A company is composed of zero, one
or more divisions. A division is composed of zero, one or more sections.

Company

Division

Section

 Another example: A pen consists of refill, A refill consist of nib.

INHERITANCE
 Inheritance is a way to form new classes using classes that have already been defined.

Inheritance is intended to help reuse existing code with little or no modification. The
new classes, known as derived classes (or child classes or sub classes), inherit
attributes and behaviour of the pre-existing classes, which are referred to as base
classes (or parent classes or super classes) as shown below The inheritance
relationship of sub- and super classes gives rise to a hierarchy.

 Inheritance is referred as generalization relationship.

GENERALIZATION
 The Generalization association ("is a") is the relationship between the base class that

is named as “superclass” or “parent” and the specific class that is named as “subclass”
or “child”.

Inheritance is a “is-a” relationship between two classes. For example, Student is a
Person; Chair is Furniture; Parrot is a Bird etc. in all these examples, first class (i.e.
Student, Chair, Parrot) inherits properties from the second class (i.e. Person,
Furniture, Bird).

21 Object-Oriented Analysis Design

 The Generalization association is also known as Inheritance. The subclass is a particular
case of the superclass and inherits all attributes and operations of superclass, but can have
your own additional attributes and operations.

 In UML is used also the multiple inheritance when the subclass inherits properties and
behaviours of more than one superclass.

 On the UML Diagram the Generalization association represents as the line with empty
triangle that connects superclass and subclass as shown below.

 There are several reasons to use inheritance as enumerated below:

• Inheritance for specialization
• Inheritance for generalization
• Inheritance for extension
• Inheritance for restriction
• Inheritance for overriding

GROUPING CONSTRUCTS
 There are two grouping constructs: module and sheet.

Module is logical construct for grouping classes, associations and generalizations. An
object model consists of one or more modules. The module name is usually listed at the
top of each sheet.

A sheet is a single printed page. Sheet is the mechanism for breaking a large object model
into a series of pages. Each module is contained in one or more sheets. Sheet numbers or sheet
names inside circle contiguous to a class box indicate other sheets that refer to a class.

22 Object-Oriented Analysis Design

3. DYNAMIC & FUNCTIONAL MODELLING

DYNAMIC MODELING

 Dynamic model describes those aspects of the system that changes with the time.
 It is used to specify and implement control aspects of the system. It depicts states,

transitions, events and actions.
 The dynamic model includes event trace diagrams describing scenarios.
 An event is an external stimulus from one object to another, which occurs at a particular

point in time. An event is a one-way transmission of information from one object to
another.

 A scenario is a sequence of events that occurs during one particular execution of a system.
Each basic execution of the system should be represented as a scenario.

 The dynamic model is represented graphically by state diagrams.
 A state corresponds to the interval between two events received by an object and

describes the "value" of the object for that time period.
 A state is an abstraction of an object's attribute values and links, where sets of values are

grouped together into a state according to properties that affect the general behaviour of
the object.

 Each state diagram shows the state and event sequences permitted in a system for one
object class.

SCENARIO

 A scenario is a sequence of events that occurs during one particular execution of a
system.

 Each basic execution of the system should be represented as a scenario.

 The scope of scenario may vary. It may include all events in the system or it may include
only those events generated by certain objects. A scenario can be written as a list of text
statements.

23 Object-Oriented Analysis Design

Example: A scenario to use ATM for withdrawing money. Each event transmits information
from one object to another. For example, the event “the ATM asks the user to insert a card”
transmits a signal from the ATM to the User. The next event is “the user inserts a cash card”.
The next event is “the ATM accepts the card and reads its serial no.” and so on.

Normal ATM scenario

1. The ATM asks the user to insert a card

The user inserts a cash card

2. The ATM accepts the card and reads its serial
number.

3. The ATM requests the password

The user enters 1234

4. The ATM verifies the serial number and password with the

consortium

The consortium checks it with bank ABC and notifies the

ATM of acceptance

5. The ATM requests amount

The user enters 15000

6. The ATM processes the request and dispenses the required
amount of money.

EVENT TRACE DIAGRAM
 The limitation of scenario is that it is not clear from scenario, how many objects are involved

and which object generates an event and which object receives an event.
 To overcome this limitation, an event-trace diagram is introduced. In the event-trace

diagram, the sequence of events and the objects exchanging events both can be shown.
 The diagram shows each object as a vertical line and each event as a horizontal arrow from

the sender object to the receiver object. Time increases from top to bottom. Spacing between
horizontal arrows carries no information. Figure 3.2 below shows the event-trace diagram
for interaction with the ATM.

24 Object-Oriented Analysis Design

Example: In this diagram, four objects – User, ATM, Consortium and Bank - are involved, which
are shown with four vertical lines. User generates an event “insert card” which is shown as
horizontal arrow from user to ATM. That means source of the event is User object and destination
of the event is ATM. In response to this event, the ATM generates the “request password” event to
the User. Spacing between these two arrows is insignificant but the event “insert card” occurs before
the event “request password” and so on.

25 Object-Oriented Analysis Design

STATE MACHINE
 A state machine is a behaviour which specifies the sequence of states an object visits during

its lifetime in response to events, together with its responses to those events.
 State: A state is a condition during the life of an object during which it satisfies some

condition, performs some activity, or waits for some external event.
 A state corresponds to the interval between two events received by an object and describes

the "value" of the object for that time period.
 A state is an abstraction of an object's attribute values and links, where sets of values are

grouped together into a state according to properties that affect the general behaviour of the
object.

 A sub-state is a state that is nested in another state. A state that has sub-states is called a
composite state. A state that has no sub-states is called a simple state. Sub-states may be
nested to any level.

 Event: An event is the specification of a significant occurrence. For a state machine, an event
is the occurrence of a stimulus that can trigger a state transition.

 In other words, an event is something that happens at a point in time. An event does not have
duration.

 An individual stimulus from one object to another is an event. Press a key on the key board,
train departs from station are examples of events.

 Transition: A transition is a relationship between two states indicating that an object in the
first state will, when a specified set of events and conditions are satisfied, perform certain
actions and enter the second state. Transition can be self-transition. It is a transition whose
source and target states are the same.

 Action: An action is an executable, atomic (with reference to the state machine) computation.
Actions may include operations, the creation or destruction of other objects, or the sending
of signals to other objects (events).

 An action is an instantaneous operation. An action represents an operation whose duration is
insignificant compared to the resolution of the state diagram. For instance, disconnect phone
line might be an action in response to an on-hook event for the phone line. An action is
associated with an event.

 Activity: Activity is an operation that takes time to complete. An activity is associated with
a state. Activity includes continuous operations such as displaying a picture on a television
screen as well as sequential operations that terminate by themselves after an interval of time
such as closing a valve or performing a computation.

 A state may control a continuous activity such as ringing a telephone bell that persists until
an event terminates it causing the transition of the state. Activity starts on entry to the state
and stops on exit. A state may also control a sequential activity such as a robot moving a part
that progresses until it completes or until it is interrupted by an event that terminates
prematurely.

26 Object-Oriented Analysis Design

STATE DIAGRAM
 State diagrams are used to describe the behaviour of a system. State diagrams describe all

of the possible states of an object as events occur.

 Each diagram usually represents objects of a single class and tracks the different states of
its objects through the system.

 It relates events and states. A change of state caused by an event is called a transition.

Transition is drawn as an arrow from the receiving state to the target state.

 A state diagram is graph whose nodes are states and whose directed arcs are transitions
labelled by event names. State diagram specifies the state sequence caused by an event
sequence.

When to use state diagrams ?

 Use state diagrams to demonstrate the behaviour of an object through many use cases of the
system.

 Only use state diagrams for classes where it is necessary to understand the behaviour of the

object through the entire system.

 Not all classes will require a state diagram and state diagrams are not useful for describing
the collaboration of all objects in a use case. State diagrams are combined with other
diagrams such as interaction diagrams and activity diagrams.

How to draw state diagrams ?

 State diagrams have very few elements. The basic elements are rounded boxes representing

the state of the object and arrows indicting the transition to the next state. The activity section
of the state symbol depicts what activities the object will be doing while it is in that state as
shown in figure below.

27 Object-Oriented Analysis Design

 Initial and Final States: All state diagrams being with an initial state of the object as shown
below. This is the state of the object when it is created. After the initial state the object
begins changing states. Conditions based on the activities can determine what the next state
the object transitions to.

 The initial state is denoted by a filled black circle and may be labeled with a name. The final
state is denoted by a circle with a dot inside and may also be labeled with a name as shown
in figure below

 Transitions: Transitions from one state to the next are denoted by lines with arrowheads. A
transition may have a trigger, a guard and an effect, as shown in figure below.

 "Trigger" is the cause of the transition, which could be a signal, an event, a change in some
condition, or the passage of time. "Guard" is a condition which must be true in order for the
trigger to cause the transition. "Effect" is an action which will be invoked directly on the

28 Object-Oriented Analysis Design

object that owns the state machine as a result of the transition.

29 Object-Oriented Analysis Design

 State Actions: In the transition example above, an effect was associated with the transition.
If the target state had many transitions arriving at it, and each transition had the same effect
associated with it, it would be better to associate the effect with the target state rather than
the transition. This can be done by defining an entry action for the state. The diagram below
shows a state with an entry action and an exit action. It is also possible to define actions that
occur on events, or actions that always occur. It is possible to define any number of actions
of each type.

 Self-Transitions: A state can have a transition that returns to itself, as shown in the Figure
below. This is the most useful when an effect is associated with the transition.

 Compound States: A sub-state is a state that is nested in another state. A state that has sub-

states is called a composite state. A state that has no sub-states is called a simple state. Sub-
states may be nested to any level. The notation in the above version indicates that the details
of the Check PIN submachine are shown in a separate diagram.

30 Object-Oriented Analysis Design

31 Object-Oriented Analysis Design

STATE DIAGRAM FOR MAKING A PHONE CALL

32 Object-Oriented Analysis Design

STATE DIAGRAM FOR ATM TRANSACTION

33 Object-Oriented Analysis Design

FUNCTIONAL MODELLING
 The functional model describes computations and specifies those aspects of the system

concerned with transformations of values - functions, mappings, constraints, and
functional dependencies. The functional model captures what the system does, without
regard to how or when it is done.

 The functional model is represented graphically with multiple data flow diagrams, which
show the flow of values from external inputs, through operations and internal data stores,
to external outputs.

 Data flow diagrams show the dependencies between values and the computation of output
values from input values and functions. Functions are invoked as actions in the dynamic
model and are shown as operations on objects in the object model.

DATA FLOW DIAGRAMS (DFD)
 The DFD is a simple graphical formalism that can be used to represent a system in terms

of the input data to the system, various processing carried out on that data, and the output
generated by the system.

 DFD is used to represent the data transformations. That is it shows how input data is
transformed into suitable output data.

 DFD is also termed as Bubble chart though a process is represented using bubble.

 Advantages of DFD are:

i. DFDs are simple to understand and use

ii. It uses a very few primitive symbols to represent the functions performed by a
system and the data flow among these functions

 There are two different notations used in DFDs.

i. Gane and Sarson notation

ii. DeMarco and Yourdon notation

You may use either of these two conventions, just don’t mix them.

entity process data store data flow

Gane & Sarson
symbols

outstanding work orders

DeMarco & Yourdon
symbols outstanding work orders

id

tenant

1.1

receive work
request

work request

1.1

receive work
request

work request

D2

tenant

34 Object-Oriented Analysis Design

Entities:
 Those physical entities external to the software system such as people, departments, other

companies, other systems or even a logical entity like bank account.
 Entities are called sources if they are external to the system and provide data to the system,

and sinks if they are external to the system and receive information from the system
Processes:
 A function / process is represented using a circle.
 A process must have at least one input and at least one output
 A process should be numbered.
 The name of the process should be specified in the bubble.

Data stores:
 Data store represents a logical file or a data base or any media which stores data. It can be

online or “hard copy” .
 Data stores are labelled with a noun (e.g. the label “customer” indicates that information about

customers is kept in that data store)
 Data is stored whenever there are more than one process that needs it and these processes

don’t always run one after the other (if the data is ever needed in the future it must be stored)

Data flows:
 It must originate from and/or lead to a process (this means that entities and data stores cannot

communicate with anything except processes –remember that it takes a process to make the
data flow)

 It can go from process to process, but that does imply that no data is stored at that point
 It can have one arrowhead indicating the direction in which the data is flowing
 It can have 2 arrowheads when a process is altering (updating) existing records in a data store
 Elementary data cannot be decomposed into its meaningful constituents. For example, roll no,

pin code, and quantity. Aggregate data can be decomposed into its meaningful constituents.
For example, name can be decomposed into first name, middle name and last name.
Sometimes an aggregate value is split into its constituents, each of which goes to a different
process. A fork in the path as shown below is used to do this. Reverse can also be done. That
is elementary data coming from different sources can be aggregated. This is done by reversing
the arrows in the diagram below.

 In De Marco and Yourdon notation an additional symbol is mentioned for representing

hardcopy output.

Street

Address city

State

35 Object-Oriented Analysis Design

number

Data item number valid number

Read Validate
number number

 A data dictionary lists all data items that appear in a DFD model. The data items listed
include all data flows and lists all data items that appear in a DFD model.

 Synchronous and Asynchronous operations:

 If two processes are directly connected by a dataflow arrow, then they are
synchronous. This means that they operate at the same speed.

 If two processes are connected through a data store, then the speed of operation is
independent. They are asynchronous.

Validat
e

number

valid number

Number dB

 Short comings of DFD / Disadvantages:

i. DFDs leave ample scope to be imprecise

ii. Control aspects are not defined by a DFD

iii. Though decomposition is possible, same problem has several alternative DFD
representations.

CONTEXT DIAGRAM / LEVEL 0 DFD
Context diagram is the highest level of data flow representation of a system. It represents the
entire system as a single bubble. The bubble in context diagram is annotated with the name of the
software system being developed.
 Context diagram establishes the context in which the system operates. That is who the users

are, what data do they input to the system and what data do they received from the system.

 All entities should be represented in the context diagram. No entities are represented in any
other levels of DFD.

Data item Read
numbe

r

36 Object-Oriented Analysis Design

DRAWING DFDs
 Except for the context DFD, each DFD represents the breakdown of one process.

For example, in the hierarchy on the next page, the level 1 DFD that represents the breakdown
of process 1.2 will contain processes 1.2.1, 1.2.2 and 1.2.3. But it will not contain 1.2, nor
any other process.

 Context level diagrams show all external entities. They do not show any data stores. The
context diagram always has only one process labelled 0.

 When you draw a level 0 diagram, follow these rules:

 include all entities in the context diagram
 show any data store that are shared by the processes in the level 0 diagram

 When you draw a level 1 or 2 etc. diagram, follow these rules:

o include all entities and data stores that are directly connected by data flow to the
one process you are breaking down

o show all other data stores that are shared by the processes in this breakdown (these
data stores are “internal” to this diagram and will not appear in higher level
diagrams, but will appear in lower level diagrams)

That last statement is often confusing. Here is another explanation using the hierarchy on If
a data store is used only by processes 3.2.1 and 3.2.3, then it will appear only in the level 2
diagram that includes processes 3.2.1, 3.2.2 and 3.2.3. It will not appear in the diagram that
shows processes 3.1 and 3.2 because it is internal to process 3.2.

 A DFD that contains processes that are not further broken down is called a primitive DFD.

GUIDELINES FOR DRAWING DFD

 Naming conventions:
o Processes: strong verbs
o Data flows: nouns
o data stores: nouns
o external entities: nouns

 No more than 7 - 9 processes in each DFD.
 Dataflow must begin, end, or both begin & end with a process.
 Dataflow must not be split.
 A process is not an analogy of a decision in a systems or programming flowchart. Hence, a

dataflow should not be a control signal. Control signals are modelled separately as control
flows.

 Loops are not allowed.
 A dataflow cannot be an input signal. If such a signal is necessary, then it must be a part of

the description of the process, and such process must be so labelled. Input signals as well as
their effect on the behaviour of the system are incorporated in the behavioural model (say,
state transition graphs) of the information system.

 Decisions and iterative controls are part of process description rather than dataflow.
 If an external entity appears more than once on the same DFD, then a diagonal line is added

to the north-west corner of the rectangle (representing such entity).
 Updates to data store are represented in the textbook as double-ended arrows. This is not,

however, a universal convention. I would rather you did not use this convention since it can

37 Object-Oriented Analysis Design

be confusing. Writing to a data store implies that you have read such data store (you cannot

38 Object-Oriented Analysis Design

write without reading). Therefore, data store updates should be denoted by a single-ended
arrow from the updating process to the updated data store.

 Data flows that carry a whole record between a data store and a process is not labelled in the
textbook since there is no ambiguity. This is also not a universal convention. I would rather
you labelled such data flows explicitly.

 Conservation Principles:
Data stores & Data flows: Data stores cannot create (or destroy) any data. What comes out of
a data store therefore must first have got into a data store through a process.

Processes: Processes cannot create data out of thin air. Processes can only manipulate data
they have received from data flows. Data outflows from processes therefore must be derivable
from the data inflows into such processes.

 Levelling Conventions:

 Numbering: The system under study in the context diagram is given number `0'. The
processes in the top level DFD are labelled consecutively by natural numbers
beginning with 1. (Also you can number the processes in LEVEL 1 as 0.1, 0.2, 0.3,
0.4… 0.n). When a process is exploded in a lower level DFD, the processes in such
lower level DFD are consecutively numbered following the label of such parent
process ending with a period or full-stop (for example 1.2, 1.2.3, etc. or you can use
0.1.1, 0.1.2…etc).

Remember: Don’t mix up the numbering conventions. If you label the level 1 processes
as 0.1, 0.2, 0.3…0.n then you have to number the level 2 processes as 0.1.1, 0.1.2,
0.1.3 etc.

Else if you label the level 1 processes as 1,2,3…n, then you have to number the level
2 processes as 1.1, 1.2, 1.3 etc.

 Balancing: The set of DFDs pertaining to a system must be balanced in the sense that

corresponding to each dataflow beginning or ending at a process there should be an
identical dataflow in the exploded DFD.

 Data stores: Data stores may be local to a specific level in the set of DFDs. A data
store is used only if it is referenced by more than one process.

 External entities: Lower level DFDs cannot introduce new external entities. The
context diagram must therefore show all external entities with which the system under
study interacts. In order not to clutter higher level DFDs, detailed interactions of
processes with external entities are often shown in lower level DFDs but not in the
higher level ones.

39 Object-Oriented Analysis Design

COMMONLY MADE MISTAKES IN DFDS

Diagramming mistakes: Black holes, grey holes, and miracles

A second class of DFD mistakes arise when the outputs from one processing step do not match its
inputs. It is not hard to list situations in which this might occur:

 A processing step may have input flows but no output flows. This situation is sometimes

called a black hole .
 A processing step may have output flows but now input flows. This situation is sometimes

called a miracle.
 A processing step may have outputs that are greater than the sum of its inputs - e.g., its

inputs could not produce the output shown. This situation is sometimes referred to as a grey
hole.

40 Object-Oriented Analysis Design

DFD OF COMPILER

LEVEL 0 DFD: CONTEXT DIAGRAM OF COMPILER

LEVEL 1 DFD: COMPILER

LEVEL 2.1 DFD: LEXICAL ANALYSIS

LEVEL 2.2 DFD: SYNTAX ANALYSIS

41 Object-Oriented Analysis Design

4. SYSTEM DESIGN

 System design is the first stage in which the basic approach to solving the problem is
selected.

 During system design, the overall structure and style are decided.
 The system architecture is the overall organization of the system into components called

subsystems.

STEPS IN SYSTEM DESIGN

1. Breaking a system into subsystems.
2. Identifying concurrency
3. Allocating subsystems to processors and tasks.
4. Management of data stores
5. Handling global resources
6. Choosing software control implementation
7. Handling boundary conditions
8. Setting trade-off priorities
9. Selecting the suitable architectural frame works.

Organizing a system into Subsystems

 Divide the system into a smaller number of components. Each major component of a
system is called a subsystem.

 Each subsystem encompasses aspects of the system that share some common property –
similar functionality, the same physical location or execution on the same kind of
hardware.

 Each subsystem has a well -defined interface to the rest of the system.
 Each subsystem can be again decomposed into modules.
 The decomposition of systems into subsystems may be organized as a sequence of

horizontal layers or vertical partitions.
o Layers: A layered system is an ordered set of virtual worlds, each built in terms

of the ones below it and providing the implementation basis for the ones above it.

o Layered architecture comes in closed or open.
o In a closed architecture, each layer is built only in terms of the immediate lower

layer. This reduces dependencies between layers and allows changes to be made

most easily. In an open architecture, a layer can use the features of any lower layer
to any depth. This reduces the need to redefine operations at each level.

o In a layered architecture model, classes within each subsystem layer provide
services to the layer above it. Ideally, this knowledge is one-way: each layer knows

42 Object-Oriented Analysis Design

about the layer below it, but the converse is not true. An example of a layered

43 Object-Oriented Analysis Design

system architecture is the ISO Reference Model for Open Systems Interconnection

(OSI) as shown in Figure below.

o Example of Subsystem Layers is (ISO Reference Model for OSI)

Application

Presentation

Session

Transport

Network

Data Link

Physical

Partitions: Partitions vertically divide a system into several independent or weakly

subsystems, each providing one kind of service.

o One difference between layers and partitions is that layers vary in their level of

abstraction, but partitions merely divide a system into pieces, all of which have a
similar level of abstraction.

o Layers can be partitioned and partitions can be layered. Most large systems require a
mixture of layers and partitions.

 Relationships between subsystems are: there are two types of relationships between

subsystems: a) Client-Server and b) Peer-to-peer

a) Client–Server relationship: In client-server relationship client calls on the server for
performing certain task and server replies back with the result. The client–server characteristic
describes the relationship of cooperating programs in an application. The server component
provides a function or service to one or many clients, which initiate requests for such services.

b) Peer-to-peer relationship: In peer-to-peer relationship, each subsystem may call on the

others. The communication in this case can be much complex because individual subsystems may

44 Object-Oriented Analysis Design

not be aware about each other. Designing such type of systems may lead to subtle design errors.

45 Object-Oriented Analysis Design

Identifying Concurrency

 Concurrency (or distribution) is an important issue during design process as it may affect the

design of classes and their interfaces. Concurrency can be very important for improving the

efficiency of a system.

 In the analysis model, as the real world and in hardware, all objects are concurrent. In an

implementation, not all software objects are concurrent, because one processor may support

many objects.

 One important goal of the system design is to identify the objects that must be active

concurrently and the objects that have mutually exclusive activity

 For concurrent applications, such as distributed and real-time applications, the following

activities are performed:

o Identify inherent concurrency: - Two objects are inherently concurrent if they can

receive events at the same time without interacting. Inherently concurrent subsystems
need not be implemented as separate hardware units.

o Define concurrent Tasks: Many objects in a system are dependent on each other. By
examining the state diagrams of individual objects and exchange of events among them,
many objects can be folded in to a single thread of model. A thread of control is a path
through a set of state diagrams on which only a single object at a time is active.

o Make decisions about subsystem structure and interfaces. Develop the overall
software architecture. Structure the application into subsystems.

o Make decisions about how to structure the distributed application into distributed
subsystems, in which subsystems are designed as configurable components. Design
the distributed software architecture by decomposing the system into distributed
subsystems and defining the message communication interfaces between the subsystems.

o Make decisions about the characteristics of objects, in particular, whether they are
active or passive. For each subsystem, structure the system into concurrent tasks (active

objects). During task structuring, tasks are structured using the task structuring criteria,
and task interfaces are defined. Make decisions about the characteristics of messages, in

particular, whether they are asynchronous or synchronous (with or without reply).

o Make decisions about class interfaces. For each subsystem, design the information
hiding classes (passive classes). Design the operations of each class and the parameters of
each operation. Use inheritance to develop class hierarchies.

46 Object-Oriented Analysis Design

o Develop the detailed software design, addressing detailed issues concerning task
synchronization and communication, and the internal design of concurrent tasks.

o For real-time applications, analyse the performance of the design. Apply real-time
scheduling to determine if the concurrent real-time design will meet performance goals.
If not, investigate alternative software architectures.

Allocation of Subsystems

 The designer must allocate each concurrent subsystem to a hardware unit, either a general-

purpose processor or specialized functional unit. The system designer must do the
following:

o Estimate performance needs and the resources needed to satisfy them.
o Choose hardware or software implementation for subsystems.
o Allocate software subsystems to processors to satisfy performance needs and

minimize inter processor communication
o Determine the connectivity of the physical units that implement the subsystems.
o Consider the connection between nodes and communication protocols to be used.
o Consider the need for redundant processing.
o Identify any interface implied by deployment.
o Determining physical Connectivity by considering connection topology, repeated

units, communications etc.

Management of Data Storage

 System designer must decide from among several alternatives for data storage that can be

used separately or in combination of data structures, files and databases. This involves

identifying the complexity of the data, the size of the data, the type of access to data (single

user or multiple user), access times and portability.

 Different kinds of data stores provide trade-offs among cost, access time, capacity and

reliability.

 Files provide cheap, simple and permanent storage and are easy to work with. However,

file on one system may not be useful when transported to another system because of

varying file implementations over different hardware types. Files may be used in random

access mode or sequential access mode. Sequential file format is mostly a standard format

and is easy to handle. Whereas, the commands and storage formats for random access files

and index files vary in their formats. The kind of data that belongs to files can be

characterized as follows:

47 Object-Oriented Analysis Design

• Data with high volumes and low information density (such as archival files or historical

data)

• Modest quantities of data with simple structure.
• Data that are accessed sequentially.
• Data that can be fully read into the memory.

 Another alternative to store data is to use database management systems (DBMSs). There are

various kinds of DBMSs like relational, object oriented, network and hierarchical etc.

Databases make applications easier to port to different hardware and operating system

platforms. One disadvantage of DBMSs is their complex interface. The kind of data that

belongs to a database can be characterized as follows:

• Data to be stored exists in large quantity.
• Data that is to be kept in store for a very longer period of time.
• Data that must be secured against unauthorized and malicious access.
• Data that must be accessed by multiple application programs.
• Data that require updates at fine levels of detail by multiple users

Handling Global Resources

 The system designer must identify global resources and determine mechanisms for controlling

access to them. There are several kinds of global resources:

• Physical system: Example includes processors, tape drives and communication channels.

• Space: Example includes keyboard, buttons on a mouse, display screen
• Logical names: Example includes object IDs, filenames, and class names.

• Access to shared data: Example includes Databases

 Physical resource such as processors, tape drives etc. can control their own access by

establishing a protocol for obtaining access.

 For a logical resource like Object ID or a database, there arises a need to provide access in a

shared environment without any conflicts. One strategy to avoid conflict may be to employ a

guardian object which controls access to all other resources.

Choosing a Software Control Strategy

 It is best to choose a single control style for the whole system. There are two kinds of control

flows in a software system: External control and internal control.

48 Object-Oriented Analysis Design

 External control concerns the flow of externally visible events among the objects in the

system. There are three kinds of external events: procedural-driven sequential, event-driven

sequential and concurrent.

Procedural-driven Control: In a procedure-driven system, the control lies within the

program code. Procedures request external input and then wait for it, when input arrives,

control resumes within the procedure that made the call.

Event-driven Control: In the sequential model, the control resides within a dispatcher or

monitor that the language, subsystem or operating system provides. In event-driven, the

developers attach application procedures to events and the dispatcher calls the procedures

when the corresponding events occur. Usually event driven systems are used for external

control in preference to procedure driven systems, because the mapping from events to

program constructs is simpler and more powerful. Event driven systems are more modular

and can handle error conditions better than procedure-driven systems.

Concurrent system Control: Here control resides concurrently in several independent
objects, each as a separate task. A task can wait for input, but other tasks continue execution.
The operating system keeps track of the raised events while a task is being performed so that
events are not lost. Scheduling conflicts among tasks are also resolved by the operating
system.

 Internal control refers to the flow of control within a process. It exists only in the

implementation and therefore is neither inherently concurrent nor sequential.

Handling boundary Conditions

 Although most of the system design concerns steady-state behaviour system designer must

consider boundary conditions as well and address issues like initialization, termination and

failure (the unplanned termination of the system).

Initialization: It refers to initialization of constant data, parameters, global variables,
tasks, guardian objects, and classes as per their hierarchy. Initialization of a system
containing concurrent tasks must be done in a manner so that tasks can be started
without prolonged delays. There is quite possibility that one object has been initialized
at an early stage and the other object on which it is dependent is not initialized even
after considerable time.

Termination: Termination requires that objects must release the reserved resources.

49 Object-Oriented Analysis Design

In case of concurrent system, a task must intimate other tasks about its termination.

50 Object-Oriented Analysis Design

Failure: Failure is the unplanned termination of the system, which can occur due to
system fault or due to user errors or due to exhaustion of system resources, or from
external breakdown or bugs from external system. The good design must not affect
remaining environment in case of any failure and must provide mechanism for
recording details of system activities and error logs.

Setting trade-off Priorities

 The system designer must set priorities that will be used to guide trade-offs for the rest of the

design. For example system can be made faster using extra memory.
 Design trade-offs involve not only the software itself but also the process of developing it.

System designer must determine the relative importance of the various criteria as a guide to
making design trade-offs. Design trade-offs affect entire character of the system.

 Setting trade-offs priorities is at best vague. Priorities are generally specified as a statement
of design philosophy.

Choose Common Architectural Styles

 Several prototypical architectural styles are common in existing systems. Each of these is well

suited to a certain kind of system.
 Architectural styles include Pipe and Filter, Repository architecture, Layered systems, Client

–Server, Peer- Peer, Publisher – Subscriber etc.

51 Object-Oriented Analysis Design

5. OBJECT DESIGN
 Object design phase determines the full definitions of the classes and associations used in the

implementation, interfaces and algorithms of the methods used to implement operations.
 Adds internal objects for implementation and optimizes data structures and algorithms.
 Object oriented design is primarily a process of refinement or adding details.

STEPS IN OBJECT DESIGN
1. Combine the three models to obtain operations on classes.
2. Design algorithms to implement operations
3. Optimize access paths to data / Design optimization
4. Implementation of control for external interactions
5. Adjust class structure to increase inheritance
6. Design of associations
7. Determine object representation
8. Packing classes and associations into modules.

Combine the three models to obtain operations on classes
 The object, dynamic, functional models obtained after analysis is combined together to define

operations.
 The designer convert the actions and activities of the dynamic model and the processes of the

functional model into operations attached to classes in the object model.
 Process of mapping the logical structure of the analysis model into a physical organization of

a program.
 Algorithm implementing an operation depends on the state of the object.
 The network of processes within DFD represents the body of an operation.

Design algorithms to implement operations
 Each operation specified in the functional model must be formulated as an algorithm.
 Algorithm shows how an operation is done.
 Algorithm may be subdivided into calls on simpler operations.
 Algorithm designer must

 Choose algorithms that minimize the cost of implementing operations.
 Select data structures appropriate to the algorithms.
 Define new internal classes and operations as necessary
 Assign responsibility for operations to appropriate classes.

Optimize access paths to data / Design optimization
 Basic design model uses analysis model which captures the logical information about the

system, while design model must add details to support efficient information access.
 Inefficient but semantically correct analysis model can be optimized to make the

implementation more efficient.
 During design optimization, designer must

 Add redundant associations to minimize access cost and maximize convenience.
 Rearrange the computation for greater efficiency.
 Save derived attributes to avoid re-computation of complicated expression

52 Object-Oriented Analysis Design

Implementation of control for external interactions
 Designer must refine the strategy for implementing the state – event models present in the

dynamic model.
 Basic approaches to implement dynamic model are

 Using a location within the program to hold state.
 Direct implementation of a state – machine mechanism.
 Control as concurrent tasks.

Adjust class structure to increase inheritance
 The designer should rearrange and adjust classes and operations to increase inheritance
 The designer should abstract common behaviour out of group of classes
 The designer should use delegation to share behaviour when inheritance is semantically

invalid.
Design of associations
 Associations are the “glue” of object model, providing access paths between objects.
 Designer must formulate a strategy for implementing the associations in the object model.
 Either choose a global strategy for implementing all associations uniformly or select a

particular technique for each association based on the way it is used in the application.
 Associations may be either one-way associations or two –way associations.
Determine object representation
 Designer must choose when to use primitive types in representing objects and when to

combine groups of related objects.
 Classes can be defined in terms of other classes, but eventually everything must be

implemented in terms of built-in primitive datatypes, such as integers, strings and enumerated
types.

 Designer must often choose whether to combine groups of related objects.
Packing classes and associations into modules.
 Object oriented languages have various degrees of packaging.
 In large project, careful partitioning of an implementation into packages is important to permit

different persons to cooperatively work on a program.
 Packaging involves the following issues:

 Hiding internal information from outside view.
 Coherence of entities.
 Constructing physical modules

53 Object-Oriented Analysis Design

6. UNIFIED MODELLING LANGUAGE (UML)

 UML is a standard language for specifying, visualizing, constructing, and documenting the
artefacts of software systems.

 UML was created by Object Management Group (OMG) and UML 1.0 specification draft
was proposed to the OMG in January 1997.

 UML is a modelling language used to model software and non- software systems.
 Although UML is used for non- software systems the emphasis is on modelling object oriented

software applications. Most of the UML diagrams discussed so far are used to model different
aspects like static, dynamic etc.

BUILDING BLOCKS OF UML

 The building blocks of UML can be defined as:

 Things
 Relationships
 Diagrams

THINGS

Things are the most important building blocks of UML. Things can be:

 Structural
 Behavioral
 Grouping
 Annotational

 Structural things:

The Structural things define the static part of the model. They represent physical and
conceptual elements. Following are the brief descriptions of the structural things.

Class: Class represents set of objects having similar responsibilities.

Interface: Interface defines a set of operations which specify the responsibility of a class.

 or IInterface

54 Object-Oriented Analysis Design

Collaboration: Collaboration defines interaction between elements.

or

Use case: Use case represents a set of actions performed by a system for a specific goal.

Component: Component describes any physical or replaceable part of a system.

Node: A node can be defined as a physical element that exists at run time which possess a
limited memory and processing capability

 Behavioral things:

A behavioral thing consists of the dynamic parts of UML models. Following are the
behavioral things:

Interaction:Interaction is defined as a behavior that consists of a group of messages
exchanged among elements to accomplish a specific task.

State machine: State machine is useful when the state of an object in its life cycle is
important. It defines the sequence of states an object goes through in response to events.
Events are external factors responsible for state change.

Chain of

responsibilites

55 Object-Oriented Analysis Design

 Grouping things:

Grouping things can be defined as a mechanism to group elements of a UML model together.
There is only one grouping thing available:

Package: Package is the only one grouping thing available for gathering structural and
behavioural things.

 Annotational things:

Annotational things can be defined as a mechanism to capture remarks, descriptions, and
comments of UML model elements. Note is the only one Annotational thing available.

Note:
A note is used to render comments, constraints etc of an UML element.

RELATIONSHIPS

Relationship is another most important building block of UML. It shows how elements are associated
with each other and this association describes the functionality of an application.

There are four kinds of relationships available.

Dependency: Dependency is a relationship between two things in which change in one element also
affects the other one.

Association: Association is basically a set of links that connects elements of an UML model. It also
describes how many objects are taking part in that relationship.

Generalization: Generalization can be defined as a relationship which connects a specialized element
with a generalized element. It basically describes inheritance relationship in the world of objects.

Realization: Realization can be defined as a relationship in which two elements are connected. One
element describes some responsibility which is not implemented and the other one implements them.
This relationship exists in case of interfaces.

56 Object-Oriented Analysis Design

57 Object-Oriented Analysis Design

UML DIAGRAMS

 UML diagrams are the ultimate output of the entire discussion. All the elements,
relationships are used to make a complete UML diagram and the diagram represents a
system.

 The visual effect of the UML diagram is the most important part of the entire process. All
the other elements are used to make it a complete one.

 Various diagrams in UML are listed below:

1. Class diagram – A class diagram shows a set of classes, interfaces and collaborations and their
relationships.

2. Object diagram – An object diagram shows a set of objects and their relationships.
3. Use case diagram – A use-case diagram shows a set of use cases and actors and their

relationships
4. Sequence diagram – A sequence diagram is an interaction diagram that emphasizes the time –

ordering of messages.
5. Collaboration diagram – A collaboration diagram is an interaction diagram that emphasizes

the structural organisation of the objects that send and receive messages.
6. Activity diagram – An activity diagram is a special kind of state-chart diagram that shows the

flow from activity to activity within a system.
7. State-chart diagram – A state-chart diagram shows a state machine, consisting of states,

transitions, events and activities.
8. Deployment diagram – A deployment diagram shows the configuration of run time processing

nodes and the components that live on them.
9. Component diagram – A component diagram shows the organisation and dependencies among

a set of components.

COMMON MECHANISMS IN UML
 The UML is made simpler by the presence of four common mechanisms that apply throughout

the language: specifications, adornments, common divisions, and extensibility mechanisms.

Specifications
 By using a specification, we can easily specify something in a bit more detail so that the role

and meaning of the term being specified is presented to us in a more clear and concise
manner.

 For example, we can give a class a rich specification by defining a full set of attributes,
operations, full signatures, and behaviours. The developer will then have a clearer notion of
what the capabilities and limitations of that class are.

 Specifications can be included in the class, or specified separately.

Common Divisions
 Common divisions are used in order to distinguish between two things that might appear to

be quite similar, or closely related to one another. There exist two main common divisions:
abstraction vs. manifestation and interface vs. implementation.

58 Object-Oriented Analysis Design

 The distinction between a class and an object is an example of common division in UML,
where the class is an abstraction and the object is a clear manifestation of that class. Most
UML building blocks have this kind of class/object distinction, e.g. use case, use case
instance etc.

 In the second common division – interface vs. implementation – we say that an interface
declares some kind of contract, or agreement, whereas an implementation represents one
concrete realisation of that contract. The implementation is then responsible for carrying
out the interface.

Adornments
 Adornments are textual or graphical items, which can be added to the basic notation of a

UML building block in order to visualise some details from that element’s specification.
 For example an abstract class consist of a public, private and protected operations, then it

can be represented as follows: + denotes public, # denotes protected and – denotes private.

 For example, let us consider association, which in its most simple notation consists of one
single line. Now, this can be adorned with some additional details, such as the role and the
multiplicity of each end as shown below.

 0.1 *

Employer employee

Extensibility Mechanisms
 The extensibility mechanisms allow you to customize and extend the UML by adding new

building blocks, creating new properties, and specifying new semantics in order to make
the language suitable for your specific problem domain. There are three common
extensibility mechanisms that are defined by the UML: stereotypes, tagged values, and
constraints.

Stereotypes
 Stereotypes allow you to extend the vocabulary of the UML so that you can create new

model elements, derived from existing ones, but that have specific properties that are
suitable for your problem domain.

 They are used for classifying or marking the UML building blocks in order to introduce
new building blocks that speak the language of your domain and that look like primitive,
or basic, model elements.

 For example, when modelling a network you might need to have symbols for representing
routers and hubs. By using stereotyped nodes you can make these things appear as primitive
building blocks.

59 Object-Oriented Analysis Design

<<metaclass>>
Model Element

<<exceptions>>
Underflow

Server

{processors=3}

 As another example, let us consider exception classes in Java or C++, which you might
sometimes have to model. Ideally you would only want to allow them to be thrown and
caught, nothing else. Now, by marking them with a suitable stereotype you can make these
classes into first class citizens in your model; in other words, you make them appear as
basic building blocks.

 Stereotypes also allow you to introduce new graphical symbols for providing visual cues to
the models that speak the vocabulary of your specific domain (see fig 4).

 Graphically, a stereotype is rendered as a name enclosed by guillemots and placed above
the name of another element (see fig 3). Alternatively, you can render the stereotyped
element by using a new icon associated with that stereotype (see fig 4).

Fig 3. Named stereotype Fig 4. Named stereotype Fig 5. Stereotyped element
with icon as icon

Tagged Values
 Tagged values are properties for specifying keyword-value pairs of model elements, where

the keywords are attributes. They allow you to extend the properties of a UML building
block so that you create new information in the specification of that element.

 Tagged values can be defined for existing model elements, or for individual stereotypes,
so that everything with that stereotype has that tagged value.

 It is important to mention that a tagged value is not equal to a class attribute. Instead, you
can regard a tagged value as being a metadata, since its value applies to the element itself
and not to its instances.

 One of the most common uses of a tagged value is to specify properties that are relevant to
code generation or configuration management. So, for example, you can make use of a
tagged value in order to specify the programming language to which you map a particular
class, or you can use it to denote the author and the version of a component.

 As another example of where tagged values can be useful, consider the release team of a
project, which is responsible for assembling, testing, and deploying releases. In such a case
it might be feasible to keep track of the version number and test results for each main
subsystem, and so one way of adding this information to the models is to use tagged values.

 Graphically, a tagged value is rendered as a string enclosed by brackets, which is placed
below the name of another model element. The string consists of a name (the tag), a
separator (the symbol =), and a value (of the tag) (see figure below).

Fig: Tagged Value

60 Object-Oriented Analysis Design

Constraints
 Constraints are properties for specifying semantics and/or conditions that must be held true

at all times for the elements of a model. They allow you to extend the semantics of a UML
building block by adding new rules, or modifying existing ones.

 For example, when modelling hard real time systems it could be useful to adorn the models
with some additional information, such as time budgets and deadlines. By making use of
constraints these timing requirements can easily be captured.

 Graphically, a constraint is rendered as a string enclosed by brackets, which is placed near
the associated element(s), or connected to the element(s) by dependency relationships. This
notation can also be used to adorn a model element’s basic notation, in order to visualise
parts of an element’s specification that have no graphical cue.

61 Object-Oriented Analysis Design

7. CLASS DIAGRAMS

 The class diagram is a static diagram. It represents the static view of an application.
 Class diagram is not only used for visualizing, describing and documenting different aspects

of a system but also for constructing executable code of the software application.
 The class diagram describes the attributes and operations of a class and also the constraints

imposed on the system.
 The class diagrams are widely used in the modelling of object oriented systems because they

are the only UML diagrams which can be mapped directly with object oriented languages.
 The class diagram shows a collection of classes, interfaces, associations, collaborations and

constraints. It is also known as a structural diagram.

PURPOSE

 Analysis and design of the static view of an application.
 Describe responsibilities of a system.
 Base for component and deployment diagrams.
 Forward and reverse engineering.

APPLICATION OF CLASS DIAGRAMS

 Describing the static view of the system.
 Showing the collaboration among the elements of the static view.
 Describing the functionalities performed by the system.
 Construction of software applications using object oriented languages.

STEPS FOR DRAWING CLASS DIAGRAMS

 Identify the various objects in the system.
 Group the objects with similar properties and semantics into a class.
 Identify the responsibilities, operations and attributes associated with each class.
 Identify the relationship between classes.
 Adjust class structures to improve inheritance.
 Model the class diagram suitably by showing classes and their interrelationships.

CLASS DIAGRAM CONCEPTS

 The name of the class diagram should be meaningful to describe the aspect of the system.
 Each element and their relationships should be identified in advance.
 Responsibility (attributes and methods) of each class should be clearly identified.
 For each class minimum number of properties should be specified. Because unnecessary

properties will make the diagram complicated.
 Use notes whenever required to describe some aspect of the diagram. Because at the end

of the drawing it should be understandable to the developer/coder.

62 Object-Oriented Analysis Design

ADVANCED CLASSES

 A classifier is a mechanism that has structural features (in the form of attributes), as well as
behavioural features (in the form of operations).

 Classifiers include classes, interfaces, datatypes, signals, components, nodes, use cases, and
subsystems. Those modelling elements that can have instances are called classifiers.

 Every instance of a given classifier shares the same features. The most important kind of
classifier in UML is class.

 Classifiers represented graphically are shown below.

63 Object-Oriented Analysis Design

 Visibility of a Classifier
Visibility indicates whether the attributes and operations of a classifier can be used by any
other classifiers. There are three levels of visibility in UML public, protected and private.

Figure below indicates the various visibilities of class Toolbar

 Scope(Owner Scope) of a Classifier
The owner scope of a feature(attribute/operations) specifies whether the feature appears in
each instance of the classifier or whether there is just a single instance of the feature for all
instances of the classifier. Two kinds of owner scope – classifier scope and instance scope. An
instance scope is an owner scope in which each instance of the classifier holds its own value
for the feature whereas classifier scopeis the one which have just one value of the feature for
all instances of the classifier. classifier scope is rendered(shown) by underlining the feature’s
name. No adornment means that the feature is instance scoped. Figure:3 shows the scope of a
classifier.

64 Object-Oriented Analysis Design

 Abstract, Root, Leaf and Polymorphic Elements
o Abstract classes are those that do not have any direct instances and is specified in UML

by writing its name in italics. A leaf class is a class that have no children and is
specified in UML by writing the property leaf below the class’s name. A root class is
a class that has no parents and is specified in UML by writing the property root below
the class’s name.

o An operation is polymorphic if it is specified with the same signature at different
places in the hierarchy of classes. Which operation to invoke is done polymorphically,
that is a match is determined at run time according to the type of the object. These are
indicated in figure

For example, display and isInside are both polymorphic operations. Furthermore, the operation
Icon::display() is abstract, meaning that it is incomplete and requires a child to supply an
implementation of the operation. In the UML, you specify an abstract operation by writing its name
in italics, just as you do for a class. By contrast, Icon::getID() is a leaf operation as indicated by the
property leaf. This means that the operation is not polymorphic and may not be overridden.

65 Object-Oriented Analysis Design

 Multiplicity
The number of instances a class may have is called its multiplicity. Multiplicity applies to
attributes, as well. A class having single instance is called as a singleton class. It is indicated
in Figure below.

 Attributes

A class’s structural features are indicated by its attributes.
The syntax of an attribute in UML is
[visibility] name [multiplicity] [: type] [= initial-value] [{property-string}]
Some legal attribute declarations are given in Table below:

 Three defined properties that can be used with attribute values are given in Table below

Where default property is ‘changeable’.
 Operations

A class’s behavioral features are indicated by its operations.
The UML distinguishes between operation and method. An operation specifies a
service that can be requested from any object of the class to affect behavior; a method is an
implementation of an operation.

 The syntax of an operation in the UML is

[visibility] name [(parameter-list)][: return-type] [{property-string}]

66 Object-Oriented Analysis Design

Template Classes
A template is a parameterized element. A template includes slots for classes, objects, and
values, and these slots serve as the template’s parameters. Every templates should be
instantiated first. Instantiation involves binding these formal template parameters to actual
ones. For a template class, the result is a concrete class that can be used just like any
ordinary class.
The instantiation of a template class can be modelled in two ways.

First done implicitly, by declaring a class whose name provides the binding.
Second, explicitly by using a dependency stereotyped as bind, which specifies that the source
instantiates the target template using the actual parameters. A template class is indicated in
Figure below

67 Object-Oriented Analysis Design

SAMPLE CLASS DIAGRAM FOR LIBRARY MANAGEMENT SYSTEM

68 Object-Oriented Analysis Design

8. OBJECT DIAGRAMS & PACKAGES

 An object diagram shows a set of objects and their relationships at a point in time.
 An object diagram consists of the objects that collaborate, but without any of the messages

passed among them.
 An object diagram is essentially an instance of a class diagram or the static part of an

interaction diagram.
 Used to model the static design view or static process view of a system
 Object diagrams helps in modelling static data structures.
 Object diagrams commonly contain – Objects & Links.
 Object diagrams are derived from class diagrams so object diagrams are dependent upon class

diagrams.
 Object diagrams represent an instance of a class diagram. The basic concepts are similar for

class diagrams and object diagrams. Object diagrams also represent the static view of a system
but this static view is a snapshot of the system at a particular moment.

 Object diagrams are used to render a set of objects and their relationships as an instance.
 Object diagram is similar to class diagram. The difference is that a class diagram represents

an abstract model consisting of classes and their relationships. But an object diagram
represents an instance at a particular moment which is concrete in nature.

PURPOSE

 Forward and reverse engineering.
 Object relationships of a system
 Static view of an interaction.
 Understand object behaviour and their relationship from practical perspective
 Making the prototype of a system.
 Modelling complex data structures.
 Understanding the system from practical perspective.

MODELLING OBJECT STRUCTURES

To model an object structure,

 Identify the mechanism you’d like to model. A mechanism represents some function

or behaviour of the part of the system you are modelling that results from the
interaction of a society of classes, interfaces, and other things.

 For each mechanism, identify the classes, interfaces, and other elements that
participate in this collaboration; identify the relationships among these things, as well.

 Consider one scenario that walks through this mechanism. Freeze that scenario at a
moment in time, and render each object that participates in the mechanism.

 Expose the state and attribute values of each such object, as necessary, to understand
the scenario.

 Similarly, expose the links among these objects, representing instances of associations
among them.

69 Object-Oriented Analysis Design

OBJECT DIAGRAM EXAMPLE

OBJECT DIAGRAM EXAMPLE - Company

70 Object-Oriented Analysis Design

PACKAGES

 A mechanism for organizing elements into groups
 Package name must be unique within its enclosing package
 Package must have a name that distinguishes it from other packages
 Two naming mechanism simple name, path name (prefixed by the name of the package in

which that package lives).
 Package may contain classes, interfaces, components, nodes, collaborations, use cases,

diagrams, and even other packages
 Package forms a namespace(every element in a package can be identified uniquely eg:P1::

Queue and P2:: Queue are different)
 Contents of a package can be shown textually or graphically as shown below.

 Visibility : +, -, #

1. Public elements (denoted by +) are visible outside the packages also.
2. Protected elements (denoted by #) are visible only to packages that inherit from another

package
3. Private elements (denoted by -) are not visible outside the package.

 Fully qualified name example Client::OrderForm.
 Two stereotypes import and access– both specify that the source package has access to the

contents of the target. Import adds contents to source, so chances of name clashes, access
doesn’t add contents. These are non transitive

71 Object-Oriented Analysis Design

 Importing and Exporting

Importing means accessing the elements of the source by the target. It can be done by using
the stereotype <<import>>. It’s a one way process. It’s non transitive. if A’s package imports
B’s package, A can now see B, although B cannot see A. Importing grants a one-way
permission for the elements in one package to access the elements in another package.

Exports are the public parts of a package. It’s also non-transitive Figure below represents this.

 Generalization

In Generalization the specialized packages inherit the public and protected elements of the
more general package. Figure below illustrates this.

72 Object-Oriented Analysis Design

 UML defines five standard stereotypes that apply to packages.
1. facade – Specifies a package that is only a view on some other package
2.framework – Specifies a package consisting mainly of patterns
3. stub – Specifies a package that serves as a proxy for the public contents of another
package
4. subsystem – Specifies a package representing an independent part of the entire system
being modeled
5. system – Specifies a package representing the entire system being modelled.

 Distinction between classes and packages:

Classes are abstractions of things found in a problem or solution; packages are mechanisms
we use to organize the things in your model. Packages have no identity, classes do have
identity through instances.

 Modelling Groups of Elements

To model groups of elements,

 Scan the modelling elements in a particular architectural view and look for clumps defined

by elements that are conceptually or semantically close to one another.
 Surround each of these clumps in a package.
 For each package, distinguish which elements should be accessible outside the package.

Mark them public, and all others protected or private. When in doubt, hide the element.
 Explicitly connect packages that build on others via import dependencies.
 In the case of families of packages, connect specialized packages to their more general

part via generalizations

 Modelling Architectural Views

To model architectural views,

 Identify the set of architectural views that are significant in the context of your problem. In
practice, this typically includes a design view, a process view, an implementation view, a
deployment view, and a use case view.

 Place the elements (and diagrams) that are necessary and sufficient to visualize, specify,
construct, and document the semantics of each view into the appropriate package.

 As necessary, further group these elements into their own packages.
 There will typically be dependencies across the elements in different views. So, in general, let

each view at the top of a system be open to all others at that level.

73 Object-Oriented Analysis Design

INTERFACES, TYPES & ROLES

 INTERFACE
 An interface is a collection of operations that are used to specify a service of a class

or a component.
 Graphically, an interface is rendered (represented) as a circle; in its expanded form,

an interface may be rendered as a stereotyped class (a class with stereotype interface)
as shown in Figure below.

 To distinguish an interface from a class, prepend an ‘I’ to every interface name.
Operations in an interface may be adorned with visibility properties, concurrency
properties, stereotypes, tagged values, and constraints.

 Interface don’t have attributes. Interfaces span model boundaries and it doesn’t have
direct instances.

 An interface may participate in generalization, association, dependency and
realization relationships.

 Interfaces may also be used to specify a contract for a use case or subsystem.
 An interface name must be unique within its enclosing package. Two naming

mechanism; a simple name (only name of the interface), a path name is the interface
name prefixed by the name of the package in which that interface lives represented in
Figure below.

74 Object-Oriented Analysis Design

 TYPE

 A type is a stereotype of a class used to specify a domain of objects, together with the
operations (but not the methods) applicable to the object of that type.

 To distinguish a type from an interface or a class, prepend a ‘T’ to every type.
Stereotype type is used to formally model the semantics of an abstraction and its
conformance to a specific interface.

 ROLE
 A role names (indicates) a behaviour of an entity participating in a particular context.

Or, a role is the face that an abstraction presents to the world.
 For example, consider an instance of the class Person. Depending on the context, that

Person instance may play the role of Mother, Comforter, PayerOfBills, Employee,
Customer, Manager, Pilot, Singer, and so on.

 When an object plays a particular role, it presents a face to the world, and clients that
interact with it expect a certain behaviour depending on the role that it plays at the
time.

 For example, an instance of Person in the role of Manager would present a different
set of properties than if the instance were playing the role of Mother. Figure below
indicates a role employee played by person and is represented statically there.

75 Object-Oriented Analysis Design

9. INTERACTION DIAGRAMS

 Interaction diagram describe some type of interactions among the different elements in the
model. So this interaction is a part of dynamic behaviour of the system.

 This interactive behaviour is represented in UML by two diagrams known as Sequence
diagram and Collaboration diagram. The basic purposes of both the diagrams are similar.

 Sequence diagram emphasizes on time sequence of messages and collaboration diagram
emphasizes on the structural organization of the objects that send and receive messages.

 Application of interaction diagrams
o To model flow of control by time sequence.
o To model flow of control by structural organizations.
o For forward engineering.
o For reverse engineering.

 Purpose of Interaction diagrams:
o To capture dynamic behaviour of a system.
o To describe the message flow in the system.
o To describe structural organization of the objects.
o To describe interaction among objects.

SEQUENCE DIAGRAM

 A sequence diagram shows elements as they interact over time, showing an interaction or

interaction instance.
 Sequence diagrams are organized along two axes:

1. The horizontal axis shows the elements that are involved in the interaction. The
elements on the horizontal axis may appear in any order.

2. The vertical axis represents time proceeding down the page.
 Sequence diagrams are made up of a number of elements, including class roles, specific

objects, lifelines, and activations. All of these are described in the following subsections.

Class roles

In a sequence diagram, a class role is shown using the notation for a class as defined in
previously, but the class name is preceded by a forward slash followed by the name of the
role that objects must conform to in order to participate within the role, followed by a
colon. Other classes may also be shown as necessary, using the notation for classes, Class
roles and other classes are used for specification-level collaborations communicated using
sequence diagrams. Following figure shows the projectOrganization class role as well as the
Project and Report classes.

Figure A: Class role and two classes

76 Object-Oriented Analysis Design

Lifelines

A lifeline, shown as a vertical dashed line from an element, represents the existence of the
element over time. Figure B shows lifelines for the class role (projectOrganization) and classes
(Project and Report) in Figure A.

Figure B: Lifelines

Activations

An optional activation, shown as a tall, thin rectangle on a lifeline, represents the period
during which an element is performing an operation. The top of the rectangle is aligned
with the initiation time, and the bottom is aligned with the completion time. Figure C shows
activations for the class roles in Figure A, where all the elements are simultaneously
performing operations.

Figure D. Activations

77 Object-Oriented Analysis Design

COMMUNICATION / MESSAGING
 In a sequence diagram, a communication, message, or stimulus is shown as a horizontal

solid arrow from the lifeline or activation of a sender to the lifeline or activation of a
receiver.

 In the UML, communication is described using the following UML syntax:
[guard] *[iteration]sequence_number : return_variable :=
operation_name(argument_list)

in which:

guard

iteration

Is optional and indicates a condition that must be satisfied for the communication to be
sent or occur. The square brackets are removed when no guard is specified.

Is optional and indicates the number of times the communication is sent or occurs. The
asterisk and square brackets are removed when no iteration is specified.

sequence_number
Is an optional integer that indicates the order of the communication. The succeeding colon
is removed when no sequence number is specified. Because the vertical axis represents
time proceeding down the page on a sequence diagram, a sequence number is optional.

return_variable

Is optional and indicates a name for the value returned by the operation. If you choose not
to show a return variable, or the operation does not return a value, you should also omit
the succeeding colon and equal sign.

operation_name

Is the name of the operation to be invoked.

argument_list
Is optional and is a comma-separated list that indicates the arguments passed to the
operation. Each parameter may be an explicit value or a return variable from a preceding
communication. If an operation does not require any arguments, the parentheses are left
empty.

 In some ways, a sequence diagram is like a stack trace of object messages. Below is a sample
sequence diagram

78 Object-Oriented Analysis Design

 The Sequence diagram allows the person reading the documentation to follow the flow
of messages from each object. The vertical lines with the boxes on top represent instances
of the classes (or objects).

 The label to the left of the colon is the instance and the label to the right of the colon is
the class. The horizontal arrows are the messages passed between the instances and are
read from top to bottom.

 In the above example a customer (user) depositing money into MyAccount which is an
instance of Class SavingsAccount. Then MyAccount object Validates the account by
asking the Bank object, MyBank to ValidateAccount. Finally, the Customer Asks the
ATM object for a Receipt by calling the ATM‘s operation GetReceipt.

 The white rectangle indicate the scope of a method or set of methods occurring on the
Object My Bank. The dotted line is a return from the method ValidateAccount.

TYPES OF MESSAGING

1. SYNCHRONOUS MESSAGING

 Assumes that a return is needed.
 Sender waits for the return before proceeding with any other activity
 Represented as a full arrow head
 Return messages are dashed arrows

2. ASYNCHRONOUS MESSAGING

 Does not wait for a return message
 Exemplified by signals
 Sender only responsible for getting the message to the receiver
 Usually modelled using a solid line and a half arrowhead to distinguish it from the full

arrowhead of the synchronous message

79 Object-Oriented Analysis Design

3. SELF REFERENCE MESSAGE

 A self-reference message is a message where the sender and receiver are one and the same
object.

 In a self-reference message the object refers to itself when it makes the call.
 message 2 is only the invocation of some procedure that should be executed.

4. TIMED MESSAGES

 Messages may have user-defined time attributes, such as sentTime or receivedTime
 User-defined time attributes must be associated with message numbers
 Instantaneous messages are modeled with horizontal arrows
 Messages requiring a significant amount of time, it is possible to slant the arrow from the

tail down to the head from Object Creation and Destruction .
For Example

For messages 1, 2 and 3 the time required for their execution is considered equal to zero.

80 Object-Oriented Analysis Design

Message 4 requires more time (time > 0) for its execution.

81 Object-Oriented Analysis Design

5. CONDITIONAL MESSAGING
 In a sequence diagram, conditionality (which involves communicating one set of

messages or stimuli rather than another set of messages or stimuli) within a generic-
form interaction is shown as multiple communications leaving a single point on a
lifeline or activation, with the communications having mutually exclusive guard
expressions.

 A lifeline may also split into two or more lifelines to show how a single element would
handle multiple incoming communications, and the lifelines would subsequently
merge together again.

 Following figure shows the Generate Project-Status Report interaction and collaboration
description where the GenerateProject-StatusReportHandler class requests that the
projectOrganization class role indicate that the project is empty if the project is a newly
created or unpopulated project, and the GenerateProject-StatusReportHandler class requests
that the projectOrganization class role continue generating information for the report
element if the project is not a newly created or populated project. In this figure, only
the first communication is shown for actually generating the report. If there are no other
communications for actually generating the report, the GenerateReport communication
may go to the same lifeline as the OutputEmptyProject communication. we use different
lifelines in the figure because each lifeline represents a different path of execution.

Sequence diagram conditionality within a generic-form interaction

Object Creation: If the object is created during the sequence execution it should appear somewhere
below the top of the diagram.
For example.

Alternative A Alternative B

82 Object-Oriented Analysis Design

Object Destruction: If the object is deleted during the sequence execution, place an X at the
point in the object lifeline when the termination occurs.

For example.

COLLABORATION DIAGRAM

 A collaboration diagram shows elements as they interact over time and how they are
related. That is, it shows a collaboration or collaboration instance.

 While sequence diagrams are time-oriented and emphasize the overall flow of an
interaction, collaboration diagrams are time- and space oriented and emphasize the overall
interaction, the elements involved, and their relationships.

 Sequence diagrams are especially useful for complex interactions, because you read them
from top to bottom. Collaboration diagrams are especially useful for visualizing the impact
of an interaction on the various elements, because you can place an element on a diagram
and immediately see all the other elements with which it interacts.

 A collaboration diagram shows the interactions organized around the structure of a model,
using either:

a) Classifiers (e.g. classes) and associations, or
b) Instances (e.g. objects) and links.

 Collaboration diagram is an interaction diagram which is similar to the sequence diagram.
It reveals both structural and dynamic aspects of a collaboration. It also reveals the need
for the associations in the class diagram

 A collaboration diagram shows a graph of either instances linked to each other or classifiers
and associations.

 Navigability is shown using arrow heads on the lines representing links.
 An arrow next to a line indicates a stimuli or message flowing in the given direction.
 The order of interaction is given with a number

83 Object-Oriented Analysis Design

 Conditions can be represented in collaboration diagram as shown below.

Collaboration diagram conditionality within a generic-form interaction

OBJECT CREATION AND DESTRUCTION

 A communication that creates an element and a communication that destroys an element
are simply shown like any other communication.

 For example.

84 Object-Oriented Analysis Design

INTERACTION DIAGRAM FOR ATM
SEQUENCE DIAGRAM

85 Object-Oriented Analysis Design

COLLABORATION DIAGRAM

86 Object-Oriented Analysis Design

10. ACTIVITY DIAGRAM

 Activity diagram is another important diagram in UML to describe dynamic aspects of the
system.

 Activity diagram is basically a flow chart to represent the flow form one activity to another
activity. The activity can be described as an operation of the system.

 So the control flow is drawn from one operation to another. This flow can be sequential,
branched or concurrent.

 Activity diagrams deals with all type of flow control by using different elements like fork,
join etc.

Activity Diagram Symbols

 The start symbol represents the beginning of a process or workflow in an activity diagram.
It can be used by itself or with a note symbol that explains the starting point.

The activity symbol is the main component of an activity diagram. These shapes indicate
the activities that make up a modelled process.

The connector symbol is represented by arrowed lines that show the directional flow, or
control flow, of the activity. An incoming arrow starts a step of an activity; once the step is

completed, the flow continues with the outgoing arrow.

The join symbol, or synchronization bar, is a thick vertical or horizontal line. It combines
two concurrent activities and re-introduces them to a flow where only one activity occurs at
a time

A fork is symbolized with multiple arrowed lines from a join. It splits a single activity flow
into two concurrent activities.

The decision symbol is a diamond shape; it represents the branching or merging of various
flows with the symbol acting as a frame or container.

The note symbol allows the diagram creators or collaborators to communicate additional
messages that don't fit within the diagram itself.

 The receive signal symbol demonstrates the acceptance of an event. After the event is
received, the flow that comes from this action is completed.

 The send signal symbol means that a signal is being sent to a receiving activity, as seen
above.

The flow final symbol shows the ending point of a process' flow. While a flow final symbol
marks the end of a process in a single flow, an end symbol represents the completion of all
flows in an activity.

87 Object-Oriented Analysis Design

The end symbol represents the completion of a process or workflow.

88 Object-Oriented Analysis Design

PURPOSE OF ACTIVITY DIAGRAM

 Draw the activity flow of a system.
 Describe the sequence from one activity to another.
 Describe the parallel, branched and concurrent flow of the system.

APPLICATIONS OF ACTIVITY DIAGRAM

 Modelling work flow by using activities.
 Modelling business requirements.
 High level understanding of the system's functionalities.
 Investigate business requirements at a later stage.

ACTIVITY DIAGRAM FOR ATM WITHDRAWAL TRANSACTION

89 Object-Oriented Analysis Design

SWIMLANES
 In activity diagrams, it is often useful to model the activity's procedural flow of control

between the objects (persons, organizations, or other responsible entities) that actually execute
the action. To do this, you can add swimlanes to the activity diagram (swimlanes are named
for their resemblance to the straight-line boundaries between two or more competitors at a
swim meet).

 To put swimlanes on an activity diagram, use vertical columns. For each object that executes
one or more actions, assign a column its name, placed at the top of the column. Then place
each action associated with an object in that object's swimlane.

 A process flow or workflow diagram does not have to use swimlanes. However, since
swimlanes communicate additional information about who performs the activity or when it
takes place, it’s typically a preferred best practice to include them.

 Similarly, a swimlane diagram can use only one set of swimlanes (either vertical swimlanes
or horizontal swimlanes).

 In the UML standard, the activity diagram flows from top to bottom and veritcal swimlanes
are most commonly used.

 One of the more common choices used by creators of swimlane diagrams is to define the
roles which perform each activity within horizontal swimlanes and define the process stages
in which the activity occurs within vertical swimlanes.

SWIMLANE ACTIVITY DIAGRAM FOR SALES MANAGEMENT SYSTEM

90 Object-Oriented Analysis Design

SWIMLANE ACTIVITY DIAGRAM FOR ATM

91 Object-Oriented Analysis Design

11. USE CASE DIAGRAM

 A use case diagram at its simplest is a representation of a user's interaction with the system
that shows the relationship between the user and the different use cases in which the user is
involved.

 A use case diagram can identify the different types of users of a system and the different use
cases

 Use case diagrams consists of actors, use cases and their relationships. The diagram is used
to model the system/subsystem of an application.

 A single use case diagram captures a particular functionality of a system. So to model the
entire system numbers of use case diagrams are used.

 A use case diagram does not show the detail of the use cases: it only summarizes some of the
relationships between use cases, actors, and systems. In particular, the diagram does not show
the order in which steps are performed to achieve the goals of each use case.

 A use case diagram contains four components.
o The boundary, which defines the system of interest in relation to the world around it.
o The actors, usually individuals involved with the system defined according to their

roles.
o The use cases, which the specific roles are played by the actors within and around

the system.
o The relationships between and among the actors and the use cases.

 An actor is a class of person, organization, device, or external software component that
interacts with your system. Example actors are Customer, Restaurant, Temperature
Sensor, Credit card Authorizer.

 A use case represents the actions that are performed by one or more actors in the pursuit of a
particular goal. Example use cases are Order product, Update Menu, Process Payment.

Purpose:
 The purpose of use case diagram is to capture the dynamic aspect of a system.
 Use case diagrams are used to gather the requirements of a system including internal

and external influences. These requirements are mostly design requirements. So when a
system is analysed to gather its functionalities use cases are prepared and actors are
identified.

 Used to get an outside view of a system.
 Identify external and internal factors influencing the system.
 Show the interacting among the requirements are actors.

How to draw Use Case Diagram?
1. Identify the following regarding the system:

 Functionalities to be represented as an use case
 Actors
 Relationships among the use cases and actors.

2. The name of a use case is very important. So the name should be chosen in such a

way so that it can identify the functionalities performed.
3. Give a suitable name for actors.
4. Show relationships and dependencies clearly in the diagram.
5. Do not try to include all types of relationships. Because the main purpose of the

92 Object-Oriented Analysis Design

diagram is to identify requirements.
6. Use note whenever required to clarify some important points.

93 Object-Oriented Analysis Design

Application areas of Use Case Diagrams

 Requirement analysis and high level design.
 Model the context of a system.
 Reverse engineering.
 Forward engineering.

NOTATIONS USED IN USE CASE DIAGRAMS

USE CASE DIAGRAM FOR ATM

94 Object-Oriented Analysis Design

USE CASE DIAGRAM FOR LIBRARY MANAGEMENT SYSTEM (LMS)

95 Object-Oriented Analysis Design

12. STATE CHART DIAGRAM

 State chart diagram is simply a presentation of a state machine which shows the flow of
control from state to state.

 State chart diagrams are important for constructing executable systems through forward
and reverse engineering.

 State chart diagrams are useful in modelling the lifetime of an object
 State chart diagrams commonly contain – Simple states and composite states, Transitions-

including events and actions.
 Used for modelling the dynamic aspects of systems.
 Graphically, a state chart diagram is a collection of vertices and arcs.

`PURPOSE

 To model dynamic aspect of a system.
 To model life time of a reactive system.
 To describe different states of an object during its life time.
 Define a state machine to model states of an object.

APPLICATIONS

 To model object states of a system.
 To model reactive system. Reactive system consists of reactive objects.
 To identify events responsible for state changes.
 Forward and reverse engineering.

TERMS / NOTATIONS

 A state is a condition or situation in the life of an object during which it satisfies some

condition, performs some activity, or waits for some event.
 An event in the context of state machines is an occurrence of a stimulus that can trigger a

state transition.
 A transition is a relationship between two states indicating that an object in the first state

will perform certain actions and enter the second state when a specified event occurs and
specified conditions are satisfied.

 An activity is ongoing non-atomic execution within a state machine.
 An action is an executable atomic computation that results in a change in state of the model

or the return of a value.
 A reactive or event-driven object is one whose behaviour is best characterized by its

response to events dispatched from outside its context

 States

 A state is a condition or situation during the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

 An object remains in a state for a finite amount of time. For example, a Heater in a home

96 Object-Oriented Analysis Design

might be in any of four states: Idle, Activating, Active, and ShuttingDown.
 A state name must be unique within its enclosing state

97 Object-Oriented Analysis Design

 A state has five parts:
1. Name, Entry/exit actions, Internal transitions – Transitions that are handled without

causing a change in state,
2. Substates – nested structure of a state, involving disjoint (sequentially active) or

concurrent (concurrently active) substates,
3. Deferred events – A list of events that are not handled in that state but, rather, are

postponed and queued for handling by the object in another state
 Initial state indicates the default starting place for the state machine or sub state and is

represented as a filled black circle
 Final state indicates that the execution of the state machine or the enclosing state has been

completed and is represented as a filled black circle surrounded by an unfilled circle

 Transitions

 A transition is a relationship between two states indicating that an object in the first state will
perform certain actions and enter the second state when a specified event occurs and
specified conditions are satisfied.

 Transition fires means change of state occurs. Until transition fires, the object is in the source
state; after it fires, it is said to be in the target state.

 A transition has five parts:

1. Source state – The state affected by the transition.
2. Event trigger – a stimulus that can trigger a source state to fire on satisfying guard

condition.
3. Guard condition – Boolean expression that is evaluated when the transition is

triggered by the reception of the event trigger.
4. Action – An executable atomic computation that may directly act on the object that

owns the state machine, and indirectly on other objects that are visible to the object.
5. Target state – The state that is active after the completion of the transition.

 A transition may have multiple sources as well as multiple targets
 A self-transition is a transition whose source and target states are the same

98 Object-Oriented Analysis Design

 Event Trigger

 An event in the context of state machines is an occurrence of a stimulus that can trigger
a state transition.

 Events may include signals, calls, the passing of time or a change in state.
 An event – signal or a call – may have parameters whose values are available to the

transition, including expressions for the guard condition and action.
 An event trigger may be polymorphic

 Guard condition

 A guard condition is rendered as a Boolean expression enclosed in square brackets and
placed after the trigger event

 A guard condition is evaluated only after the trigger event for its transition occurs
 A guard condition is evaluated just once for each transition at the time the event occurs,

but it may be evaluated again if the transition is retriggered

 Action

 An action is an executable atomic computation i.e, it cannot be interrupted by an event
and runs to completion.

 Actions may include operation calls, the creation or destruction of another object, or the
sending of a signal to an object

 An activity may be interrupted by other events.

 Advanced States and Transitions

99 Object-Oriented Analysis Design

Figure: Advanced States and Transitions

100 Object-Oriented Analysis Design

Entry and Exit Actions

 Entry Actions are those actions that are to be done upon entry of a state and are shown by the
keyword event ‘entry’ with an appropriate action.

 Exit Actions are those actions that are to be done upon exit from a state marked by the keyword
event ‘exit’, together with an appropriate action.

Internal Transitions

 Internal Transitions are events that should be handled internally without leaving the state.
 Internal transitions may have events with parameters and guard conditions.

Activities
Activities make use of object’s idle time when inside a state. ‘do’ transition is used to specify
the work that’s to be done inside a state after the entry action is dispatched.

Deferred Events

A deferred event is a list of events whose occurrence in the state is postponed until a state in which
the listed events are not deferred becomes active, at which time they occur and may trigger
transitions as if they had just occurred. A deferred event is specified by listing the event with the
special action ‘defer’.

Sub-states

 A sub-state is a state that’s nested inside another one.
 A state that has sub-states is called a composite state.
 A composite state may contain either concurrent (orthogonal) or sequential (disjoint)

sub-states.
 Sub-states may be nested to any level

Sequential Sub-states

 Sequential sub-states are those sub-states in which an event common to the composite
states can easily be exercised by each states inside it at any time

 Sequential sub-states partition the state space of the composite state into disjoint states
 A nested sequential state machine may have at most one initial state and one final state

101 Object-Oriented Analysis Design

History States

 A history state allows composite state that contains sequential substates to remember the
last substate that was active in it prior to the transition from the composite state.

 A shallow history state is represented as a small circle containing the symbol H
 The first time entry to a composite state doesn’t have any history and the process for

collecting history is as shown in the figure below.

 The symbol H designates a shallow history, which remembers only the history of the
immediate nested state machine.

 The symbol H* designates deep history, which remembers down to the innermost nested
state at any depth.

 When only one level of nesting, shallow and deep history states are semantically
equivalent.

Concurrent Substates

 Concurrent substates specify two or more state machines that execute in parallel in the
context of the enclosing object

 Execution of these concurrent substates continues in parallel. These substates waits for
each other to finish to joins back into one flow

 A nested concurrent state machine does not have an initial, final, or history state

102 Object-Oriented Analysis Design

 Modelling the Lifetime of an Object
1. Set the context for the state machine, whether it is a class, a use case, or the system

as a whole.
a) If the context is a class or a use case, collect the neighbouring classes, including

any parents of the class and any classes reachable by associations or dependences.
These neighbours are candidate targets for actions and are candidates for including
in guard conditions.

b) If the context is the system as a whole, narrow your focus to one behaviour of the
system. Theoretically, every object in the system may be a participant in a model
of the system’s lifetime, and except for the most trivial systems, a complete model
would be intractable.

2. Establish the initial and final states for the object. To guide the rest of your model,
possibly state the pre- and post-conditions of the initial and final states, respectively.

3. Decide on the events to which this object may respond. If already specified, you’ll
find these in the object’s interfaces; if not already specified, you’ll have to consider
which objects may interact with the object in your context, and then which events they
may possibly dispatch.

4. Starting from the initial state to the final state, lay out the top-level states the object
may be in. Connect these states with transitions triggered by the appropriate events.
Continue by adding actions to these transitions.

5. Identify any entry or exit actions (especially if you find that the idiom they cover is
used in the state machine).

6. Expand these states as necessary by using sub-states.
7. Check that all events mentioned in the state machine match events expected by the

interface of the object. Similarly, check that all events expected by the interface of the
object are handled by the state machine. Finally, look to places where you explicitly
want to ignore events.

8. Check that all actions mentioned in the state machine are sustained by the
relationships, methods, and operations of the enclosing object.

9. Trace through the state machine, either manually or by using tools, to check it against
expected sequences of events and their responses. Be especially diligent in looking for
unreachable states and states in which the machine may get stuck.

10. After rearranging your state machine, check it against expected sequences again to
ensure that you have not changed the object’s semantics.

103 Object-Oriented Analysis Design

 For example, Figure below shows the state machine for the controller in a home security
system, which is responsible for monitoring various sensors around the perimeter of the
house

Figure: Modelling the Lifetime of an Object

104 Object-Oriented Analysis Design

13. EVENTS & SIGNALS

EVENTS

 An event is the specification of a significant occurrence that has a location in time and space.
 Anything that happens is modelled as an event in UML.
 In the context of state machines, an event is an occurrence of a stimulus that can trigger a state

transition.
 Four kinds of events – signals, calls, the passing of time, and a change in state.
 Figure 1: Events
 Events may be external or internal and asynchronous or synchronous.

o Asynchronous events are events that can happen at arbitrary times eg:- signal, the

passing of time, and a change of state.
o Synchronous events, represents the invocation of an operation eg:- Calls
o External events are those that pass between the system and its actors.
o Internal events are those that pass among the objects that live inside the system

TYPES OF EVENTS
 SIGNALS / SIGNAL EVENT
 A signal is an event that represents the specification of an asynchronous stimulus

communicated between instances.
 A signal event represents a named object that is dispatched (thrown) asynchronously by

one object and then received (caught) by another. Exceptions are an example of internal
signal.

 A signal event is an asynchronous event.
 Signal events may have instances, generalization relationships, attributes and operations.

Attributes of a signal serve as its parameters.
 A signal event may be sent as the action of a state transition in a state machine or the

sending of a message in an interaction.
 Signals are modelled as stereotyped classes and the relationship between an operation and

the events by using a dependency relationship, stereotyped as send.
 Figure below shows Signal Events

Figure: Signals

105 Object-Oriented Analysis Design

 CALL EVENT
 A call event represents the dispatch of an operation.
 A call event is a synchronous event.
 Figure below shows Call Events

 TIME AND CHANGE EVENTS

 A time event is an event that represents the passage of time..
 Modelled by using the keyword ‘after’ followed by some expression that evaluates to a

period of time which can be simple or complex.
 A change event is an event that represents a change in state or the satisfaction of some

condition
 Modelled by using the keyword ‘when’ followed by some Boolean expression

Figure: Time and Change Events

 Sending and Receiving Events

For synchronous events (Sending or Receiving) like call event, the sender and the receiver are in
a rendezvous(the sender dispatches the signal and wait for a response from the receiver) for the
duration of the operation. when an object calls an operation, the sender dispatches the operation
and then waits for the receiver.

For asynchronous events (Sending or Receiving) like signal event, the sender and receiver do not
rendezvous ie,the sender dispatches the signal but does not wait for a response from the receiver.

106 Object-Oriented Analysis Design

When an object sends a signal, the sender dispatches the signal and then continues along its flow
of control, not waiting for any return from the receiver.

 Call events can be modelled as operations on the class of the object.
 Named signals can be modelled by naming them in an extra compartment of the class as in

Figure below.

Figure: Signals and Active Classes

Modelling family of signals

 To model a family of signals,
1. Consider all the different kinds of signals to which a given set of active objects may

respond.
2. Look for the common kinds of signals and place them in a

generalization/specialization hierarchy using inheritance. Elevate more general ones
and lower more specialized ones.

3. Look for the opportunity for polymorphism in the state machines of these active
objects. Where you find polymorphism, adjust the hierarchy as necessary by
introducing intermediate abstract signals.

107 Object-Oriented Analysis Design

Modelling Exceptions

 To model exceptions,

1. For each class and interface, and for each operation of such elements, consider the
exceptional conditions that may be raised.

2. Arrange these exceptions in a hierarchy. Elevate general ones, lower specialized ones, and
introduce intermediate exceptions, as necessary.

3. For each operation, specify the exceptions that it may raise. You can do so explicitly (by
showing send dependencies from an operation to its exceptions) or you can put this in the
operation’s specification.

Figure: Modelling Exceptions

108 Object-Oriented Analysis Design

14. PROCESS AND THREADS

 A process is a heavyweight flow that can execute concurrently with other processes.
 A thread is a lightweight flow that can execute concurrently with other threads within the

same process.
 An active object is an object that owns a process or thread and can initiate control activity.
 An active class is a class whose instances are active objects.
 Graphically, an active class is rendered as a rectangle with thick lines. Processes and

threads are rendered as stereotyped active classes.

 Flow of Control

In a sequential system, there is a single flow of control. i.e, one thing, and one thing only,
can take place at a time.
In a concurrent system, there is multiple simultaneous flow of control i.e, more than one
thing can take place at a time.

 Classes and Events

 Active classes are just classes which represents an independent flow of control
 Active classes share the same properties as all other classes.
 When an active object is created, the associated flow of control is started; when the active

object is destroyed, the associated flow of control is terminated
 Two standard stereotypes that apply to active classes are, <<process>> – Specifies a

heavyweight flow that can execute concurrently with other processes. (heavyweight
means, a thing known to the OS itself and runs in an independent address
space) <<thread>> – Specifies a lightweight flow that can execute concurrently with other
threads within the same process (lightweight means, known to the OS itself.)

 All the threads that live in the context of a process are peers of one another

 Communication

 In a system with both active and passive objects, there are four possible combinations of
interaction

 First, a message may be passed from one passive object to another
 Second, a message may be passed from one active object to another
 In inter-process communication there are two possible styles of communication. First,

one active object might synchronously call an operation of another. Second, one active

109 Object-Oriented Analysis Design

object might asynchronously send a signal or call an operation of another object

110 Object-Oriented Analysis Design

 A synchronous message is rendered as a full arrow and an asynchronous message is
rendered as a half arrow

 Third, a message may be passed from an active object to a passive object
 Fourth, a message may be passed from a passive object to an active one

Figure: Communication

 Synchronization

 Synchronization means arranging the flow of controls of objects so that mutual

exclusion will be guaranteed.
 In object-oriented systems these objects are treated as a critical region
 Three approaches are there to handle synchronization:

1. Sequential – Callers must coordinate outside the object so that only one flow is in
the object at a time.

2. Guarded – multiple flow of control is sequential with the help of object’s guarded
operations. in effect it becomes sequential.

3. Concurrent – multiple flow of control is guaranteed by treating each operation as
atomic

 Synchronization are rendered in the operations of active classes with the help of
constraints

111 Object-Oriented Analysis Design

Figure: Synchronization

112 Object-Oriented Analysis Design

 Process Views

 The process view of a system encompasses the threads and processes that form the
system’s concurrency and synchronization mechanisms.

 This view primarily addresses the performance, scalability, and throughput of the system.

Modelling Multiple Flows of Control

1. Identify the opportunities for concurrent action and reify each flow as an active class.
Generalize common sets of active objects into an active class. Be careful not to over
engineer the process view of your system by introducing too much concurrency.

2. Consider a balanced distribution of responsibilities among these active classes, then
examine the other active and passive classes with which each collaborates statically.
Ensure that each active class is both tightly cohesive and loosely coupled relative to these
neighbouring classes and that each has the right set of attributes, operations, and signals.

3. Capture these static decisions in class diagrams, explicitly highlighting each active class.
4. Consider how each group of classes collaborates with one another dynamically. Capture

those decisions in interaction diagrams. Explicitly show active objects as the root of such
flows. Identify each related sequence by identifying it with the name of the active object.

5. Pay close attention to communication among active objects. Apply synchronous and
asynchronous messaging, as appropriate.

6. Pay close attention to synchronization among these active objects and the passive objects
with which they collaborate. Apply sequential, guarded, or concurrent operation
semantics, as appropriate.

Figure: Modelling Flows of Control

113 Object-Oriented Analysis Design

Modelling Inter Process Communication (IPC)

To model inter process communication,

1. Model the multiple flows of control.
2. Consider which of these active objects represent processes and which represent threads.

Distinguish them using the appropriate stereotype.
3. Model messaging using asynchronous communication; model remote procedure calls

using synchronous communication.
4. Informally specify the underlying mechanism for communication by using notes, or more

formally by using collaborations.

Figure: Modelling Inter Process Communication

114 Object-Oriented Analysis Design

15. UML ARCHITECTURAL MODELLING

COMPONENT DIAGRAM
 It shows structural replaceable parts of the system. Its main components are:

 components
 interfaces
 packages

 Component diagrams are different in terms of nature and behaviour. Component diagrams are

used to model physical aspects of a system.
 Physical aspects are the elements like physical components, executables, libraries, files,

documents etc. which resides in a node.
 So component diagrams are used to visualize the organization and relationships among

components in a system. These diagrams are also used to make executable systems.
 Figure below shows a component diagram

Component:
 A component is a physical, replaceable part that conforms to and provides the realization of a

set of interfaces.
 A component:

o Encapsulates the implementation of classifiers residing in it.
o Does not have its own features, but serves as a mere container for its elements
o Are replaceable or substitutable parts of a system

PURPOSE

 Component diagram is a special kind of diagram in UML. The purpose is also different from
all other diagrams discussed so far. It does not describe the functionality of the system but it
describes the components used to make those functionalities.

 Component diagrams are used to visualize the physical components in a system. These
components are libraries, packages, files etc.

115 Object-Oriented Analysis Design

 Component diagrams can also be described as a static implementation view of a system. Static
implementation represents the organization of the components at a particular moment.

116 Object-Oriented Analysis Design

 A single component diagram cannot represent the entire system but a collection of diagrams
are used to represent the whole.

 The purpose of the component diagram can be summarized as:

 Visualize the components of a system.
 Construct executables by using forward and reverse engineering.
 Describe the organization and relationships of the components.

How to draw Component Diagram?

 Use a meaningful name to identify the component for which the diagram is to be drawn.
 Prepare a mental layout before producing using tools.
 Use notes for clarifying important points.

Where to use Component Diagrams?

 Model the components of a system.
 Model database schema.
 Model executables of an application.
 Model system's source code.

COMPONENT DIAGRAM FOR COMPUTER

117 Object-Oriented Analysis Design

COMPONENT DIAGRAM FOR LMS

DEPLOYMENT DIAGRAM

 Deployment modelling is a specialized type of structural modelling concerned with modelling
the implementation environment of a system.

 In contrast to modelling the components of a system, a deployment model shows you the
external resources that those components require.

 Deployment modelling is applied during design activities to determine how deployment
activities will make the system available to its users; that is, to determine the elements of the
system on which deployment activities will focus

 Deployment
1. shows configuration of run-time processing nodes and the components hosted on them
2. addresses the static deployment view of an architecture
3. is related to component diagram with nodes hosting one or more components
4. essentially focus on a system‘s nodes, and include: nodes, dependencies and

associations relationships, components, packages

Nodes and Components
Components
 participate in the execution of a system.
 represent the physical packaging of otherwise logical elements

Nodes
 execute components
 represent the physical deployment of components

 The relationship deploys between a node and a component can be shown using a dependency
relationship.

 Nodes can be organized:
 In the same manner as classes and components.
 By specifying dependency, generalization, association, aggregation, and realization

relationships among them.

118 Object-Oriented Analysis Design

 The most common kind of relationship used among nodes is an association representing a
physical connection among then.

119 Object-Oriented Analysis Design

 A processor is a node that has processing capability. It can execute a component.
 A device is a node that has no processing capability (at least at the level of abstraction

showed).

Modelling Nodes Procedure
1. Identify the computational elements of the system‘s deployment view and model each as a

node.
2. Add the corresponding stereotype to the nodes
3. Consider attributes and operations that might apply to each node.

DEPLOYMENT DIAGRAM OF ATM

120 Object-Oriented Analysis Design

16. SOFTWARE ARCHITECTURE
Definition:
Software architecture of a program or software system consist of various components (modules)
in that system, externally visible properties of those components and the inter-relationship between
those components.
 Software architectures provide high-level abstractions for representing structure, behavior,

and key properties of a software system. These abstractions are useful in describing to various
stakeholders complex, real-world problems in an understandable manner.

 Software architectures are described in terms of components, connectors, and configurations.
Architectural components describe the computations and state of a system; connectors
describe the rules of interaction among the components; finally, configurations define
topologies of components and connectors.

DESIGN FRAMEWORKS
Architectural frameworks provide support for implementing, deploying, executing, and evolving
software architectures. A framework is a skeletal group of software modules that may be tailored
for building domain-specific applications, typically resulting in increased productivity and faster
time-to-market.
DESIGN PATTERN
 In software engineering, a design pattern is a general reusable solution to a commonly

occurring problem within a given context in software design. A design pattern is not a finished
design that can be transformed directly into code. It is a description or template for how to
solve a problem that can be used in many different situations.

 Design patterns can speed up the development process by providing tested, proven
development paradigms. Reusing design patterns helps to prevent subtle issues that can cause
major problems, and it also improves code readability for coders and architects who are
familiar with the patterns.

 Design patterns were originally grouped into the categories: creational patterns, structural
patterns, and behavioural patterns, and described using the concepts of delegation,
aggregation, and consultation.

 The documentation for a design pattern describes the context in which the pattern is used, the
forces within the context that the pattern seeks to resolve, and the suggested solution.

 Some of the commonly used architectural patterns are data-flow based architecture, object –
oriented architecture, layered system architecture, data-centred architecture and call and
return architecture.

121 Object-Oriented Analysis Design

DATA FLOW ARCHITECTURE / PIPE AND FILTER STYLE

 Data flow based architecture is mainly used in systems that accepts some inputs and

transform it into desired outputs by applying a series of transformations.
 Each component known as filter, transforms the data and sends this transformed data

to other filters for further processing using the connector, known as pipe. Each filter
works as an independent entity. A pipe is a unidirectional channel which transports
the data received on one end to the other end. Pipe does not change the data in anyway;
it merely supplies data to the filter on the receiver end.

 In most cases, data flow architecture degenerates a batch sequential system. In this

system, a batch of data is accepted as input and then a series of sequential filters are
applied to transform this data.

 Example of this style is a Compiler which accepts High Level Language and returns a
machine dependent form.

Advantages of Data- Flow architecture:

 It supports reusability
 It is maintainable and modifiable.
 It supports concurrent execution

Disadvantages of Data –Flow architecture

 It often degenerates to batch sequential system.

122 Object-Oriented Analysis Design

 It does not provide enough support for applications requires user interaction
 It is difficult to synchronize two different, but related streams.

123 Object-Oriented Analysis Design

LAYERED ARCHITECTURE
 In layered architecture, entire system is divided into various layers such that, each

layer performs a well- defined set of operations. These are layers are arranged in
hierarchical manner, each one built upon the one below it.

 Each layer provides a set of services to the layer above it and acts as a client to the
layer below it.

 The interaction between layers is provided through protocols (connectors) that define
a set of rules to be followed during interaction.

 Example of layered architectural style is ISO OSI Internet Protocol Suite, Operating
system layers etc.

Operating system function-layers

REPOSITORY VIEW / DATA CENTERED VIEW
 A data centered architecture has two distinct components: a central data store (central

repository) and a collection of client software (data accessors).
 The data store (database or file) represents the current state of the data and the client

software performs several operations like add, delete, update etc., on the data stored
in the central repository.

 It has two views:
Repository view: The client who updates the central repository can determine the access
permission for various other clients, to view the same updated data.
Black board view: Here the data store acts like a black board system in which the data store
is transformed into a black board that notifies the client software when the data changes /
updates.

124 Object-Oriented Analysis Design

 ADVANTAGES:
o Clients operate independently of one another.
o Data repository is independent of clients.
o It facilitates scalability.
o Supports modifiability.

CLIENT – SERVER STYLE
 It is a variant of main program and subroutines concept, but the clients and servers.
 A server provides different services. A client uses services as (remote) subroutines

from one or more servers.
 A general form of this architecture is n – tier architecture. In this style, a client sends

request to a server. But in order to service the request, the server sends some request
to another server. That is the server acts as a client for the next tier. This hierarchy can
continue for some levels, providing a n-tier system.

 A common example is 3 –tier architecture.

CALL AND RETURN ARCHITECTURE
 This architecture enables to achieve a program structure that is relatively easy to

modify and scale. The categories are Main program/subprogram architecture and
Remote Procedure Call (RPC) architectures.

PEER – PEER ARCHITECTURE / OBJECT ORIENTED VIEW
 Peer to Peer (P2P) are similar to client – server but all processes can be act as clients

and servers.
 It is more flexible but complicated design.
 There will be chance to occur dead lock or starvation.

125 Object-Oriented Analysis Design

17. ARCHITECTURAL DESCRIPTION LANGUAGE (ADL)
Architecture description language (ADL)

 ADLs are formal languages that describe or represent software architectures.
 An ADL must explicitly model components, connectors and their configurations.
 ADL must provide tool support for architecture-based development and evolution.
 There is a large variety in ADLs developed by either academic or industrial groups.
 Examples of some ADL’s are ACME, ADML, Rapide, Wright, Unicon, Aseop, MetaH,

AADL, Darwin, etc.

OVERVIEW OF ADL
 Architecture description languages (ADLs) are emerging as the notation for architecture

models. ADLs use graphics and text to express architectural information as shown below.
 ADLs are often supported by tools for creation, modification, browsing, simulation, and

analysis.
 ADLs vary widely in the architecture styles they support and that forms of analyses they

permit. Like other tools, there is no one ADL that best fits all possible situations.
 ADLs support the routine use of existing designs and components in new application systems.
 ADLs support the evaluation of an application system before it is built.

 component types:
module

computation
sharedData

seqFile
filter

process
schedProcess

general

 connector types:
pipe

dataAccess
fileIO

remoteProcedureCall
procedureCall
RTScheduler

graphical view

pipe

textual view

COMPONENT sort
INTERFACE IS
TYPE Filter

PLAYER input IS StreamIn....
IMPLEMENTATION IS....

Figure 1: Example ADL - UniCon

sort

reverser

126 Object-Oriented Analysis Design

ADL Framework

Advantages of ADL
 ADLs are a formal way of representing architecture.
 ADLs reduces ambiguity in design
 ADLs are intended to be both human and machine readable
 ADLs support describing a system at a higher level than previously possible
 ADLs permit analysis and assessment of architectures, for completeness, consistency,

ambiguity, and performance
 ADLs can support automatic generation of software systems

Disadvantages of ADL
 There is no universal agreement on what ADLs should represent, particularly as regards the

behaviour of the architecture.
 Increased development cost.
 Representations currently in use are relatively difficult to parse and are not supported by

commercial tools
 Most ADLs tend to be very vertically optimized toward a particular kind of analysis

ADLs have in common:
 Graphical syntax with often a textual form and a formally defined syntax and semantics
 Features for modelling distributed systems
 Little support for capturing design information, except through general purpose annotation

mechanisms
 Ability to represent hierarchical levels of detail including the creation of substructures by

instantiating templates

ADLs differ in their ability to:
 Handle real-time constructs, such as deadlines and task priorities, at the architectural level
 Support the specification of different architectural styles. Few handle object oriented class

inheritance or dynamic architectures
 Support the analysis of the architecture

127 Object-Oriented Analysis Design

 Handle different instantiations of the same architecture, in relation to product line architecture.

128 Object-Oriented Analysis Design

ADL ATTRIBUTES
 Architecture creation: Creates the architecture of the system in both graphical view as well as

in textual form.
 Architecture validation: Checks the consistency and correctness of the architecture being

created. It also checks the semantics and syntax of the particular ADL
 Architecture refinement: Based on the validation result, the architecture is refined with

suitable modifications in the graphical and textual views.
 Architecture analysis: The architecture is analysed for time and resource economy (e.g.,

throughput, memory utilization). Then it is analysed for functionality (e.g. completeness,
correctness, security, interoperability). After that the model is analysed for maintainability
(e.g., expandability, correctness) and portability (e.g., independence from hardware or
software environments). Finally the model is analysed for its reliability or usability

 Application building: The supporting tools for building a compile-able (or executable)
software system from the modelled specific system design is identified. The application is
built using suitable ADL supporting tools.

129 Object-Oriented Analysis Design

18. RATIONAL UNIFIED PROCESS (RUP) / UNIFIED PROCESS (UP)

User Process (UP)

UP is an open software engineering process (SEP) that models the who, when and what of developing
software. The basis of UP approach was “divide and conquer” also known as component-based
development.

UP elements
UP have three Key elements. They are:

 Iterative and incremental
 use case and risk driven
 Architecture centric

UP is an iterative and incremental process

UP aims to build robust system architecture incrementally. The iterative aspect of UP is to break a
large software development project down into a number of smaller “mini projects” which are easier
to manage and to complete successfully. Each of these “mini projects” is an iteration. Technical risks
are assessed and prioritized early and are revised during each iteration.

Use Case and risk driven
Use cases are used for:
1) identify users and their requirements
2) aid in the creation and validation of the architecture
3) help produce definitions of test cases and procedures
4) direct the planning of iterations
5) drive the creation of user documentation
6) direct the deployment of the system
7) synchronize the content of different models
8) drive traceability throughout models

Architecture-Centric
With the iterative and incremental approach different development activities are done concurrently
the system’s architecture ensures that all parts fit together

Iteration
Iterations are subprojects or mini projects of a large software development project. It contains all the
elements of a normal software development project i.e – Planning, Analysis and design, Construction,
Integration and test, an internal or external release. Baselines are the results of each Iterations.

Baselines
Baseline comprises a partially complete version of the final system and any associated project
documentation. It is an internal (or external) release of the set of reviewed and approved artifacts

130 Object-Oriented Analysis Design

generated by that iteration. Each baseline,

131 Object-Oriented Analysis Design

 provides an agreed basis for further review and development
 can be changed only through formal procedures of configuration and change management.

Increment
Increments are the difference between two consecutive baselines. They constitute a step toward the
final delivered system. Because of the use of increment and baselines UP is known as an iterative and
incremental lifecycle.

Iteration workflows
UP have five core workflows. The five core workflows are:

 Requirements – capturing what the system should do
 Analysis – refining and structuring the requirements
 Design – realizing the requirements in system architecture
 Implementation – building the software
 Test – verifying that the implementation works as desired.

Figure below represents the iteration workflows.

UP structure

132 Object-Oriented Analysis Design

Figure: UP structure

133 Object-Oriented Analysis Design

UP has four phases – Inception, Elaboration, Construction, and Transition – each of which ends
with a major milestone. Within each phase there are one or more iterations, and in each iteration we
can execute the five core workflows and any extra workflows.

Figure:4 Working of UP with Traditional SDLC phases

 The curves show the relative amount of work done in each of the five core workflows, as the
project progresses through the phases.

 The amount of work done in each core workflow varies according to the phase.one of the
great feature of UP is that it is a goal-based process rather than a deliverable – based process.

 Each phase ends with a milestone that consists of a set of conditions of satisfaction, and these
conditions may involve the creation of a particular deliverable or not depending on the specific
needs of your project.

UP PHASES
Every phase has a goal, a focus of activity with one or more core workflows emphasized, and a
milestone.

Inception phase:

 Inception is about initiating the project.
 Inception goals includes – establishing feasibility, creating a business case, capturing

essential requirements, identifying critical risks.
 Inception focus is on requirements and analysis workflows. Some design and

implementation might also be done if it is decided to build a technical, or proof of concept,
prototype.

 Inception Milestone makes use of goal-oriented approach which sets certain goals that must
be achieved for the milestone to have been reached. The milestone for Inception is the Life
Cycle Objectives. The Life Cycle Objectives includes defining system scope with the help

134 Object-Oriented Analysis Design

of use case models, capturing Key requirements, etc.

135 Object-Oriented Analysis Design

Elaboration phase:

 Elaboration is about creating a partial but working version of the system – an executable
architectural baseline.

 Elaboration goals includes

 Create an executable architectural baseline
 Develop suitable algorithms and design patterns.
 Refine the Risk Assessment
 Define quality attributes
 Capture use cases to 80% of the functional requirements
 Create a detailed plan for the construction phase
 Formulate a bid that includes resources, time, equipment, staff and cost.

 Elaboration milestone is a Life Cycle Architecture. The Life Cycle Architecture includes

UML Static Model, UML Dynamic Model, UML Use Case Model, revising risk assessment
through, etc..

Construction Phase:

 Converting the design into a system by using a suitable high level programming language
 Construction evolves the executable architectural baseline into a complete, working system.
 The Goal of Construction is to complete all requirements, analysis and design, and to evolve

the architectural baseline generated in Elaboration phase into the final system. analysis –
finish the analysis model

 Unit testing is performed to ensure the functionality of each implemented module.

Transition Phase:

 Transition is about deploying the completed system into the user community.
 Transition Goals includes

 correct defects
 prepare the user site for the new software
 tailor the software to operate at the user site
 modify the software if unforeseen problems arise
 create user manuals and other documentation
 provide user consultancy
 conduct a post project review

 Transition milestone is Product Release. Here beta testing, acceptance testing and defect

repair are finished and the product is released and accepted into the user community.

136 Object-Oriented Analysis Design

19. SAMPLE UML DIAGRAMS
Railway Reservation System UML Diagrams

Class Diagram

Use Case Diagram

137 Object-Oriented Analysis Design

Sequence Diagram

Collaboration Diagram

138 Object-Oriented Analysis Design

State Chart Diagram

Activity Diagram

139 Object-Oriented Analysis Design

Component Diagram

Component Diagram - View Classes Package

140 Object-Oriented Analysis Design

Library Management System UML Diagrams

Class Diagram:

Use Case Diagram:

141 Object-Oriented Analysis Design

Sequence Diagram:

Collaboration Diagram:

142 Object-Oriented Analysis Design

State Chart Diagram:

Activity Diagram:

143 Object-Oriented Analysis Design

Component Diagram:

Deployment Diagram:

144 Object-Oriented Analysis Design

Document Editor UML Diagrams

Class Diagram

Use Case Diagram

145 Object-Oriented Analysis Design

Sequence Diagram

Collaboration Diagram

146 Object-Oriented Analysis Design

State Chart Diagram

Activity Diagram

147 Object-Oriented Analysis Design

Component Diagram

Deployment Diagram

 Subject In charge

 Mrs. Leena R. Waghulde

148 Object-Oriented Analysis Design

